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A) Supplementary Figures 
 

Supplementary Figure 1: Flow diagram of 3D image processing and data analysis 
 
Boxes with solid lines indicate programs that were employed to derive the data presented in this 
study.  Boxes with dashed lines indicate programs (or program subroutines) provided in our 
algorithm packages, but that have not been used in the data analysis of this study. 
 

 

Supplementary Figure 2: Microtubule speed steps and dependency of the persistence 
length lp on the microtubule growth speed 
 
(a) Global histogram of single speed steps that were recorded at an average temporal sampling of 
3.6 s.  The arrow indicates a sharp incline in step counts close to zero speed steps, possibly 
arising from the pause state(s). 
(b) Analysis of the persistence length’s dependency on the microtubule growth speed.  The total 
statistics was subdivided into the speed intervals 2-8.3, 8.3-9.7, 9.7-11.3, 11.3-18.5, 18.5-30 µm 
min-1.  The intervals were chosen such that each bin contributed approximately the same 
statistics (n ≈ 260 per bin) and yielded microtubule length distributions with identical centers 
(23.54 ± 0.05 µm, s.e.m.), to rule out a bias due to the microtubule length-dependency of the 
persistence length. The growth speed error is the standard deviation 3a of the respective bin 
size a.  The error of the persistence length is calculated as described in Figure 4c.  A linear fit is 
indicated in red. 
 



B) Supplementary Tables 
 

Supplementary Table 1: 2D and 3D microtubule dynamic instability in interphase Xenopus 
laevis egg extracts 
 

reference 
& system 

average vg 
[µm min-1] 

SD of vg 
[µm min-1] 

average vs
[µm min-1]

SD of vs 
[µm min-1]

J 
[µm min-1] pgrowth pshrinakge ppause 

[S1], 2D 
11.1 
8.6 
8.5 

2.1 
3.2 
4.9 

15.2 
12.3 
16.6 

4.7 
4.6 
6.8 

– – – – 

[26], 2D 6.5 ± 0.3 
7.6 ± 0.4 

– 
– 

9.3 ± 0.5 
9.4 ± 0.5 

– 
– 

(0.58) 
(0.67) – – – 

[29], 2D 11 4 11.5 4.9 – – – – 

[S2], 2D 22.7 7.9 15.2 9.5 – 0.655 0.163 0.182 

this study, 
3D 11.1 ± 0.5 6.5 11.5 ± 1.9 8.3 9.1 ± 1.2 * 0.772 0.021 0.207 

 

reference 
& system 

fcat 
[min-1] 

fres 
[min-1] 

fg→g-pause
[min-1] 

fg-pause→g
[min-1] 

fg-pause→s
[min-1] 

fs→s-pause 
[min-1] 

fs-pause→s
[min-1] 

fs-pause→g
[min-1] 

[S1], 2D 
1.86 
0.78 
0.60 

0.96 
0.54 
0.54 

– – – – – – 

[26], 2D 0.72 ± 0.18 
0.66 ± 0.18 

1.2 ± 0.3 
0.96 ± 0.30 – – – – – – 

[29], 2D 0.34 ± 0.05 – – – – – – – 

[S2], 2D 0.30 ± 0.09 0.30 ± 0.19 – – – – – – 

this study, 
3D 0.06 ± 0.03 1.79 ± 0.89 0.71 

± 0.09 
2.58 

± 0.36 
0.31 

± 0.13 
3.58 

± 1.26 
0.79 

± 0.56 
2.76 

± 1.04 

 

Comparison of the speeds and transition frequencies from this 3D study and from previous 2D 
studies by Belmont et al. 1990 [S1], Verde et al. 1992 [2], Arnal et al. 2000 [23] and 
Niethammer et al. 2007 [S2].  The values from the study of Arnal et al. represent the situation of 
no stathmin/Op18 addition (i.e. the control data).  All listed data are based on comparable 
experimental conditions with respect to the egg extract system and the time points of data 
acquisition.  The values for the microtubule population growth speed J shown in brackets were 
calculated using the four measured parameters of the conventional kinetic model of microtubule 
dynamic instability [2].  All indicated errors are errors of the average values. 
 
 
 



Supplementary Table 2: 3D microtubule persistence length measurements as a function of 
the kinetic state and the microtubule filament length 
 

microtubule persistence lengths 

sub-population pl  

[mm]
L  

[µm] 

all microtubules 1.8 ± 0.4 24.5 ± 0.2 

growing microtubules 1.7 ± 0.4 24.3 ± 0.2 

pausing microtubules 2.1 ± 0.5 25.3 ± 0.5 

length regime 10-15 µm 0.7 ± 0.3 13.0 ± 0.1 

length regime 15-20 µm 1.1 ± 0.3 17.5 ± 0.1 

length regime 20-22.5 µm 1.7 ± 0.4 21.2 ± 0.0 

length regime 22.5-25 µm 1.9 ± 0.4 23.7 ± 0.1 

length regime 25-30 µm 2.1 ± 0.3 27.5 ± 0.1 

length regime 30-35 µm 2.8 ± 0.3 32.3 ± 0.1 

length regime 35-40 µm 3.1 ± 0.5 37.1 ± 0.1 

length regime 40-50 µm 3.3 ± 0.5 43.5 ± 0.2 

persistence length limit 5.2 ± 1.2 ∞

growth speed regime 2-8.3 µm min-1 1.8 ± 0.5 23.6 ± 0.4 

growth speed regime 8.3-9.7 µm min-1 1.5 ± 0.4 23.4 ± 0.5 

growth speed regime 9.7-11.3 µm min-1 1.5 ± 0.4 23.5 ± 0.6 

growth speed regime 11.3-18.5 µm min-1 1.6 ± 0.3 23.7 ± 0.4 

growth speed regime 18.5-30 µm min-1 1.3 ± 0.3 23.6 ± 0.9 

 

Numerical results of the measurements are visualized in Figure 4d.  The sub-population’s mean 
microtubule contour length is provided in the right column.  The error of pl  is discussed in the 

Supplementary Methods.  The error of L  is provided as the standard error of the mean 
(s.e.m.).  The  persistence length limit was determined by a sigmoidal fit analysis. 



C) Supplementary Methods 
 

Three-dimensional data analysis of microtubule dynamics 

 
 Custom processing routines were developed in Matlab (The MathWorks, Natick, MA, 
USA, see Supplementary Software) to analyze the three-dimensional data sets of microtubule 
dynamics over time.  Detailed descriptions of these programs and a spatio-temporal error 
analysis are provided below. 
 

The position of the microtubule aster’s centrosome is calculated by determining the 
intensity’s centre-of-mass after applying a threshold at 95 % of the intensity interval defined by 
the data stack’s minimal and maximal intensity values.  Subsequently, an algorithm compensates 
for the aster’s translational movement by re-centring the image stacks with respect to the 
calculated positions of the centrosome.  An interface for the image processing routines allows a 
manual tracing of microtubules by defining points along the three-dimensional structure via a 
graphical user interface (GUI).  In our analysis, we provided up to six tracing points per 
microtubule and time point.  Long and strongly bent microtubules required more tracing points 
than short and straight microtubules. 

 
Subsequently, second-order and third-order polynomial curve fits are computed for each set 

of 3D tracing points (corresponding to one microtubule filament trace).  The coordinates in each 
set are transformed into a new Cartesian reference frame defined by the axis given by the end-to-
end vector of the microtubule and two axes perpendicular to it.  Using the calculated pairs of 
polynomials, the microtubule’s length at each time point is derived by analytical curve 
integration.  The statistical errors introduced by the measurements and analyses result in 75 ms 
for the temporal regime and 988 nm for the spatial regime.  Using different methods for 
microtubule length derivation (third-order polynomial fits, second-order polynomial fits or 
summation of linear coordinate interconnections) resulted in average variations of 0.2 % for the 
parameters of dynamic instability. 
 

Next, processing routines performed the automated phase detection in the length over time 
data sets.  Phase detection is a three-stage process and explained in the supplemental section 
“Data analysis”.  The routines were designed to test four different kinetic models: the 
conventional two-state model, the four-state model and the combinations of these models with a 
consideration of dynamic speed switching.  The processing kernel of the phase detection module 
is based on an algorithm introduced by Gildersleeve et al.  [S3].  For each coordinate in the 
microtubule length-over-time diagram, a second-order polynomial fit was applied to a range of N 
data points to either side.  The resulting slope of the fit at the respective coordinate was then used 
to classify the microtubule’s state at that time point.  In the two-state model, a positive slope 
identifies a growth phase, while a negative slope corresponds to microtubule shrinkage.  In the 
four-state model, a slope with an absolute value smaller than ( )interval2 2lengthv Ntσ= is accounted 
for as a pause.  σlength is the spatial error of the measurements and tinterval is the time interval 
between two microtubule length measurements.  Thus, v denotes the maximum slope that can 
statistically result in a non-dynamic microtubule’s length-over-time diagram due to the spatial 



error of the measurements.  Larger fitting speeds were attributed to growth or shrinkage, 
depending on the sign (see also [S3]). 
 

The algorithm for the detection of dynamical speed switching subdivides all detected growth 
and shrinkage phases into a number of k sub-intervals (with k = 1 to 5) and computes the 
statistical probability of a linear model with k sub-phases for all possible configurations of 
temporal coordinates.  The set of coordinates that describes the data with the highest statistical 
probability is used for the temporal segmentation of the corresponding phase. 

 
A post-processing routine eliminates all phases that exhibit statistical irregularities that 

result from a failure of the initial second-order slope analysis.  Specifically, the control algorithm 
excludes those phases from the analysis that last shorter than the temporal spacing in the 
recordings (so-called null phases) or dynamic phases that are characterized by a speed sign that 
contradicts the phase assignment (which can occur at the start and end points in the length over 
time data sets).  
 

 The output of the automated phase fitting routines are sets of linear fits with either positive, 
negative or zero slopes (indicating growth, shrinkage and pause) for all analyzed microtubules 
(see Figure 2 for some examples).  By intersecting subsequent linear fits, the time points of 
phase switching are derived with a precision better than the time unit of the recordings, thereby 
ensuring spatio-temporal consistency (i.e. avoiding jumps in the length over time diagrams).  
Each intersection point is both the end time point of the preceding dynamic phase and the start 
time point of the next dynamic phase.  This final computational step provides the identities, the 
kinetic properties and the temporal coordinates of all dynamic phases.  A data harvesting routine 
converts these data sets into transition frequencies, state probabilities, phase duration statistics 
and dynamics speed distributions. 

 
The average transition frequency finitial→final from an initial state Sinitial to a final state Sfinal is 

calculated by dividing the total number n of transition events from the state Sinitial to the state 
Sfinal by the total observation time T of the state Sinitial in all experiments.  The denoted statistical 
error of the average transition frequency is given by finitial→final / n . 
 

Overview of the processing algorithms 

 
Two sets of image and data processing programs were developed in the Matlab computer 

language.  The first package facilitates the image processing of three-dimensional time-lapse 
data of dynamic microtubule asters.  It consists of algorithms for image pre-processing, manual 
and automated microtubule tracing and the analysis of microtubule populations and population 
statistics.  The second package is employed for the analysis of the microtubule tracing data 
obtained with the first package.  These algorithms quantify the three-dimensional geometry of 
microtubules, obtain length-over-time data sets from dynamic microtubules, perform an 
automated dynamic phase detection, quantify the parameters of microtubule dynamic instability 
for different kinetic models, analyze the microtubule growth contrast, compute parameter 
correlations in microtubule pausing and evaluate the state-dependent elasticity of microtubules in 
3D.  Since the algorithms are only sparsely annotated, a brief description of all programs is 



provided (see also the task flow diagram in Supplemental Figure 1).  More detailed 
explanations of individual routines are given in the following sections.  Note that programs (2)-
(4) require pre-processing data that is generated by the program processTL and will therefore not 
operate unless these data are available. 

 

Image processing programs (including graphical user interfaces): 

 
(1) processTL 

This tool provides routines for image pre-processing (ROI definition, axial interpolation, 
detection of the centrosome).  The program generates 3D image stacks from the raw 
microscopy data that are re-centred with respect to the centrosome and cropped according 
to the user’s settings.  The program provides options for the mapping of microtubule 
transits through a sphere around the centrosome, for the automated tracing of microtubule 
contours over time and for a temporal microtubule registration, allowing to identify 
microtubules at different time points.  The program includes a graphical user interface.  
processTL is the only program that operates directly on the raw microscopy data. 
 

(2) analyzeMap 
The program operates on the microtubule transit mapping data, which is provided by 
processTL and allows to quantify the thermal fluctuations of microtubule transits through a 
sphere around the centrosome by setting a user-specified radius.  The program contains 
routines for the temporal identification of microtubule transits and an automated rotational 
drift correction that allows tracking relative transit coordinates independently of the 
microtubule aster’s rotational and translational movements. 

 
(3) defineMT 

The program operates on the re-centred image stacks that are provided by processTL and 
allows for the manual tracing of microtubules over time.  All geometrical tracing data 
presented in this paper were obtained with this routine.  The user is able to move along the 
spatial and temporal axis, while viewing slices of the 3D microtubule aster.  The definition 
of 3D structures is facilitated by clicking at the corresponding coordinates in the images.  
The program has to be located in the “interpolation” directory that is generated by 
processTL. 
 

(4) lengthDistribution 
Similarly to defineMT, this program displays the re-centred image stacks of the dynamic 
microtubule asters.  The user interface has been optimized for the manual tracing of entire 
microtubule populations that are required for microtubule population statistical analyses. 

 

Data analysis programs (no GUIs, operate on data from programs (1)-(4)): 

 
(5) populationStatistics(p1, p2) 

This routine analyses the data that is obtained with lengthDistributions.  The average 
population growth speed J and the start time point of microtubule aster growth are 



computed from these data sets.  The program has to be located in the “interpolation” 
directory that is generated by processTL.  Parameter p1 indicates the temporal spacing in 
the 2D/3D recordings (in seconds); parameter p2 corresponds to the pixel size in the 
processed images (in µm). 
 

(6) fitTraces(p) 
The program operates on the raw tracking data that are obtained manually or by defineMT, 
computes the microtubule lengths (arithmetically and by second/third order polynomial 
fitting) and determines microtubule bending and microtubule tip deflections.  The 
parameter p indicates the pixel size in the processed images (in µm), i.e. corresponds to the 
length unit in the contour data.  The algorithm searches all sub-directories for coordinate 
data files, which are labelled “xCoordinatesX.txt”, “yCoordinatesX.txt” and 
“zCoordinatesX.txt” (X represents a natural number).  The number of microtubule data sets 
is read from a file “microtubules.txt” in the corresponding directory that contains the 
number of microtubules as plain text.  The coordinate files are also plain ASCII text files 
and are formatted according to the following layout: each row contains a temporal 
coordinate in the first column and an arbitrary number of tracing points along the filament 
in the remaining columns.  The first spatial coordinate identifies the microtubule minus-
end, while the last corresponds to the plus-end.  An arbitrary number of time points can be 
entered in such a data file, although they have to be provided in increasing order.  Each 
row must contain the same number of coordinates.  If the number of available tracing 
coordinates is not constant over time (e.g. due to significant changes in filament length, 
zeros should be entered to fill the row’s elements.  3D microtubule tip-deflections are 
computed as the distance of the plus-end to the tangent to the second order polynomial fit 
at the minus-end.  The coefficients of the second- and third-order fits are stored.  Note that 
six coefficients are stored for the second-order fits and eight for the third-order fits, since 
fitting occurs in 3D space. 

 
(7) phaseDetection(p1, p2, p3, p4) 

The algorithm performs an automated phase detection for the microtubule length-over-time 
data sets that are computed by fitTraces.  A detailed explanation of its functions is 
provided in the next section, since this program is essential for the microtubule dynamic 
instability analysis.  The parameter p1 indicates the spatial error in the microtubule length 
measurements.  Four additional open parameters in this program allow the user to define 
the kinetic model that is applied in the analysis (three being accessible via the function’s 
interface).  The parameter p2 defines the slope range of the local second-order fits as 
defined by Gildersleeve et al. [S3] (see below).  Moreover, the user can choose between a 
two-state and a four-state model of microtubule dynamic instability (parameter p3, “0” for 
two-state, “1” for four-state).  Speed switching within dynamic phases can be considered 
via parameter p4 (“0” for deactivation, “1” for activation).  The other (internal) parameters 
allow to define the statistical criteria that are employed for the definition of microtubule 
pausing and the statistical complexity of the analysis of speed switching.  Apart from the 
definition of pausing based on the second-order slope analysis (our standard approach), a 
module along the lines of Brittle et al. [5] has been implemented and can be activated by 
setting p3 to “2”. 



(8) phaseProcessing 
The program evaluates the phase assignments that are computed by phaseDetection and 
reconstructs a continuous phase history for each microtubule length over time data set. 

 
(9) phaseCleanup(p) 

The program reads the phase history that is generated by phaseProcessing and removes all 
phases that indicate a failure of the second-order fitting (performed by phaseDetection) at 
any of the contributing data points.  These phases are not considered in the downstream 
processing.  The algorithm provides an (internal) option for the visualization of the raw 
microtubule tracing data superimposed with the detected phases.  The parameter p 
indicates the spatial error in the microtubule length measurements. 

 
(10) analyzeDynamics 

The algorithm evaluates the post-processed phase history for all microtubules and presents 
the information in a data table that contains the parameters of dynamic instability.  This 
table has always the same layout, independently on the kinetic model that was selected in 
the algorithm phaseDetection.  Parameters that are not included in the chosen kinetic 
model are replaced by zeros.  The table comprises state probabilities, the centres and 
widths of the two speed distributions (growth and shrinkage), the number of observed 
phases, state observation times, the number of observed transition events, transition 
frequencies, the statistical standard deviation of transition frequencies and the average 
phase durations prior to state transition. 
 

(11) analyzeContrast 
The program analyses microtubule phase diagrams with respect to the occurrence of 
growth phase pairs.  The algorithm distinguishes between un-separated growth phase pairs 
and growth phase pairs separated by g-pauses.  The program generates growth contrast 
histograms and computes the correlation between microtubule pause durations and the 
observed growth contrasts. 

 
(12) analyzeMechanics(p) 

This program evaluates the microtubules’ 3D geometries and combines this information 
with the analysis of 3D microtubule dynamic instability, which is performed by programs 
7-10.  The distributions of microtubule tip deflections are fitted with three theoretical 
models of linear mechanics (including the deflection analysis as described below and the 
model developed by Wilhelm & Frey [S4]).  The persistence length is obtained and plotted 
in dependency of the filament length.  From these data the elastic modulus and the bending 
modulus of the microtubules is obtained.  The same analysis is performed for each 
microtubule dynamic state.  The parameter p indicates the spatial error in the microtubule 
plus-end measurements. 
 

(13) analyzePauses 
The algorithm combines the statistics of those experiments, for which microtubule 
population statistical measurements were performed (i.e. the start time point of microtubule 
aster polymerization is available).  Using this pool of data, stochastic aspects in 



microtubule pausing are analyzed.  The analysis includes a correlation of pause duration, 
microtubule length at pause and start time point of pausing. 

 
(14) visualizePopulations(p) 

The algorithm analyses the population statistical measurements and computes the global 
average population growth speed as well as the precision of the global time axis.  All 
measurements are visualized in an overview plot (by individually shifting each series on 
the length axis according to the shifts vector p). 

 
The data analysis programs (6)-(14) must be located in the same directory.  By executing 

the job processor “completeAnalysis” the programs (6)-(12) are executed sequentially, 
facilitating a complete microtubule dynamic instability and microtubule elasticity analysis for the 
raw tracing coordinate data sets that the user (or defineMT) provides in the subdirectories.  
Programs (13) and (14) require pre-processing of microtubule population statistics by program 
(5) and are therefore not automatically started by “completeAnalysis”.  “completeAnalysis” 
requires six input parameters: the image pixel size (see (6)), the microtubule length error (see 
(9)), the microtubule plus-end tip position error (see (12)), the second-order fit range (see (7)), 
the identifier of the kinetic model (see (7)) and the identifier for activation of dynamic speed 
switching (see (7)). 

 

Microtubule dynamic instability data analysis 

 
The processing algorithms (6)-(10) were developed in the Matlab computer language to 

facilitate the analysis of two- and three-dimensional microtubule tracking data with respect to the 
filaments’ statistical dynamic behavior.  This package was designed with a particular focus on a 
complete automation of all processing steps.  The algorithms allow the user to choose between 
the conventional two-state model and the four-state model of microtubule dynamic instability 
that was developed in this study.  Additionally, the algorithms can be configured to consider 
multiple growth or shrinkage phases, i.e. dynamic phases that exhibit an intrinsic switching of 
speeds. 

 
The five programs are executed sequentially.  The first program, “fitTraces” (see below), 

operates directly on the raw microtubule contour tracing coordinates.  It derives microtubule 
length-over-time diagrams for three different types of geometrical fits: a simple arithmetic 
adding-up of intersection distances between the tracking points on the microtubules as well as 
three-dimensional second- and third-order fits to the microtubule contours.  Thus, three length-
over-time diagrams result for each microtubule.  The three fitting schemes were implemented for 
two reasons: First, to investigate the resulting variability in dynamic instability parameters and 
second, to analyze the microtubules’ three-dimensional geometry itself. 

 
The second algorithm (“phaseDetection”) determines the dynamic phases on the basis of 

the microtubule length-over-time diagrams.  The phase analyses are performed independently for 
the three fitting data sets.  The processing kernel is based on an algorithm introduced by 
Gildersleeve et al. [S3].  For each coordinate in the microtubule length-over-time diagram, a 
second-order polynomial fit is applied to a range of N data points to either side.  The resulting 



slope of the fit at the respective coordinate was used to classify the microtubule’s state at that 
time point.  In the two-state analysis, a negative slope was attributed to shrinkage and a positive 
slope to a growth phase.  In the four-state analysis, a slope with an absolute value smaller than 

 

interval

2
2

lengthv
Nt
σ

=   Suppl. Eq. 1 

 
was considered as a pause.  σlength is the spatial error of the measurements as discussed in 

the next paragraph, and tinterval is the time interval between two microtubule length 
measurements.  Thus, v denotes the maximum speed that can statistically result in a non-dynamic 
microtubule’s length-over-time diagram due to the spatial error of the measurement.  Larger 
fitting speeds were attributed to growth or shrinkage, depending on the sign.  In order to adopt 
criteria that are consistent with the existing literature, N was chosen as 5 in the dynamic 
instability reference analysis [S3]. 

Optionally, an analysis of multiple dynamic phases can be performed.  In this case, each 
growth or shrinkage phase that was identified by the algorithm is analyzed by linear regression.  
In a reference analysis, the χ2-value of a linear fit to the entire detected dynamic phases is 
computed.  The probability of the linear (i.e. two-parameter, n = 2) model to describe the data set 
is ( ) { }2 2

2 exp 2p χ χ= − . 
 

In the next step, the dynamic phase’s time interval is split into k sub-intervals (each 
containing at least three data points) and k linear fits are computed to the data points within these 
k sub-intervals.  All possible combinations of sub-divisions of the original phase are considered.  
Again, the probabilities for the k fits are computed and the resulting p-values are multiplied.  If 
the product of the probabilities is smaller than the reference probability, the reference probability 
is replaced by the new value and the parameters characterizing the sub-division of the phase are 
stored.  This multi-phase fit analysis is performed for k = 2, 3, 4 and 5.  The dynamic phase 
characterization with the best overall p-value is stored.  We show in table T1 that the 
consideration of dynamic speed switching mainly affects the width of the growth speed 
distribution.  Therefore, we analyzed the sensitivity of this parameter with respect to the 
maximum number of considered sub-divisions kmax.  The standard deviation of the growth speed 
distribution (Gaussian fit) results as 1.97 µm/min, if speed changes are not taken into account.  
Including growth speed switching and setting kmax = 3 yielded a standard deviation of 3.24 
µm/min.  For kmax = 5, we obtained a standard deviation of 3.32 µm/min.  Thus, while the 
introduction of growth speed switching itself results in an increase of 65 % of the distribution’s 
standard deviation, increasing kmax from 3 to 5 resulted merely in a 2 % increase of the fitted 
parameter.  Therefore, we consider the computation of speed switching using kmax = 5 to be 
sufficiently accurate.  It should be noted that computational time increases exponentially with kmax. 

 
In the subsequent step, the algorithm “phaseAnalysis” evaluates the phases identified by 

the program “phaseDetection”.  Linear fits are applied to the dynamic phases and positional 
mean values are computed for pauses.  Temporal intersection points are derived for each pair of 
subsequent phases by intersecting the corresponding linear fits.  Phase types, phase durations, 
speeds and standard deviations of the fitting parameters are stored in a matrix.  The matrix is 



post-processed by the algorithm “phaseCleanup”.  The purpose of this post-processing is the 
elimination of statistical inconsistencies in the automatic analysis of the data sets.  First, so called 
“null-phases” are removed from the matrix.  These are phases that last for less than one time unit 
(which includes negative phase durations).  Typically, null-phases can occur at the start or end 
time points in the data sets or at transitions from growth to shrinkage with high (de-
)polymerization speeds.  Null-phases indicate a failure of the second-order polynomial fit.  The 
post-processing algorithm also removes those phases from the matrix that exhibit inconsistently 
high growth or shrinkage speeds or which are characterized by a negative growth speed or 
positive shrinkage speed.  The maximum absolute speed was set to 40 µm/min, resulting in the 
elimination of less than 1% of the detected phases on average.  In total, less than 5% of all 
detected phases were removed during post-processing data control.  The post-processing 
algorithm also provides an option for the generation of visualization plots that show the 
microtubule length-over-time diagrams and the corresponding detected phase fits. 

 
Finally, dynamic instability parameters are computed from the post-processed phase 

matrices by the algorithm “analyzeDynamics”.  The algorithm determines the number of 
dynamic phases, average speeds and their standard deviations (also time-weighted averages and 
parameters of Gaussian fits), phase probabilities, transition frequencies and their standard 
deviations and average phase durations.  The most important outputs of this last algorithm are 
three overview tables that contain the dynamic instability parameters for the three different 
geometrical fitting types.  The tables are labeled “microtubuleStatistics_X”, where “X” 
substitutes “arithmetic”, “2nd” or “3rd”, depending on the fitting type.  The layout of these tables 
looks as follows: 

 

ng Tg / Tall nS Ts / Tall np Tp / Tall 
vg std. dev. of vg - vs std. dev. of vs lp std. dev. of  lp 
vg, weighted std. dev. of 

vg, weighted 
- vs, weighted std. dev. of 

vs, weighted 
lp, weighted std. dev. of 

lp, weighted 
vg, weighted, 

Gaussian 
std. dev. of 
vg, weighted, Gaussian 

- vs, weighted, Gaussian std. dev. of 
vs, weighted, Gaussian 

lp, weighted, Gaussian std. dev. of 
lp, weighted.  Gaussian

Tg Tg / ng Ts Ts / ns Tp Tp / np 
ng→s ng→g-pause ns→g ns→s-pause np→g np→s 
Tg→s / ng→s Tg→g-pause / ng→g-

pause 
Ts→g / ns→g Ts→s-pause / ns→s-

pause 
Tp→g / np→g Tp→s / np→s 

fcat fg→g-pause fres fs→s-pause fp→g fp→s 
std. dev. of fcat std. dev. of 

fg→g-pause 
std. dev. of fres std. dev. of 

fs→s-pause 
std. dev. of fp→g std. dev. of fp→s 

Tg-pause ng-pause→g ng-pause→s Ts-pause ns-pause→g ns-pause→s 
 Tg-pause→g / ng-

pause→g 
Tg-pause→s / ng-

pause→s 
 Ts-pause→g / ns-

pause→g 
Ts-pause→s / ns-

pause→s 
 fg-pause→g fg-pause→s  fs-pause→g fs-pause→s 
 std. dev. of 

fg-pause→g 
std. dev. of 
fg-pause→s 

 std. dev. of 
fs-pause→g 

std. dev. of 
fs-pause→s 

 

“g”, “s” and “p” are abbreviations for growth, shrinkage and pause.  The letter “n” 
indicates phase counts, “T” observation times, “v” average speeds, “l” microtubule lengths and 
“f” transition frequencies.  The average growth and shrinkage speeds are calculated in three 
different ways: vg and vs are the arithmetic means of all observed phases, vg,weighted and vs,weighted 



are the time-weighted averages and vg,weighted,Gaussian and vs,weighted,Gaussian are the centers of the 
Gaussian fits to the time-weighted distributions of speeds.  A green background indicates 
parameters characterizing microtubule growth; orange indicates microtubule shrinkage and blue 
microtubule pause (independently of the microtubule’s history).  The refined analysis of 
microtubule pausing is indicated by grey and pink.  A grey background specifies g-pause, while 
a pink background represents s-pause statistics. 

 

3D microtubule contour processing 

 
The microtubule contours are analysed by program 6.  For the analytical description of the 

microtubules’ 3D geometry, the tracing points along the filament are fitted with two second-
order or alternatively with two third-order polynomials (describing the filament’s geometry in 
3D space via parameterization in two orthogonal planes).  Since only the second-order 
polynomials are employed in the analysis of the filaments’ elasticity, the processing shall be 
outlined for this situation. 

 
First, the tracing points iT  are transformed into a new Cartesian coordinate system that is 

generated for each trace individually.  The first dimension in this new coordinate system is given 
by the vector ( ), ,x y zm m m m= , which points from the microtubule’s minus-end to its plus-end.  
While any of the three components of m  can theoretically become zero, the first two 
components will never become zero at the same time.  This situation would correspond to a 
microtubule that is oriented precisely along the axial recording axis (i.e.  the axis of worst 
resolution) and thus represents a case that is avoided in the manual microtubule tracing.  The 
remaining two dimensions are therefore given by the vectors ( )1 1, 1, 1,, ,x y zm m m m=  and 

( )2 2, 2, 2,, ,x y zm m m m= , which are perpendicular to each other and perpendicular to m , as follows: 
 

( ) ( )1 1, 1, 1, 2 2

1, , : , ,0x y z y x

x y

m m m m m m
m m

= = −
+

 Suppl. Eq. 2 

( ) 1, 2, 2,1,
2 2, 2, 2, 2 2 2 2

1, 1, 1, 1,

1, , : , ,y x x y yx
x y z

zx y x y

m m m m mm
m m m m

mm m m mκ

⎛ ⎞+⎜ ⎟= = − −
⎜ ⎟+ +⎝ ⎠

 

with 
( )

( )

2

1, 1,

2 2 2
1, 1,

1 x y y x

z x y

m m m m

m m m
κ

+
= +

+
 

Suppl. Eq. 3 

 
Next, we define :g x mt d= +  as the straight line through the microtubule minus-end 

d with the slope m  and compute the vectors iv  from the tracing points iT  to the respective 
closest points on g.  These vectors iv  can be now transformed into the new coordinate system 



and expressed as linear combinations of 1m  and 2m  (referred to as iw ).  Thus, the 3D geometry 
of the trace can be projected on the two independent directions 1m  and 2m . 

 
In the final step, two polynomial functions are fitted to the projections of the set to vectors 

iw  on the m - 1m - and the m - 2m -planes.  In the case of the second-order polynomials the two fit 
functions ( )1mf t  and ( )2mf t are specified by three parameters each, 

 

( ) ( )2 2
1 1 1 1 2 2 2 2andm mf t a t b t c f t a t b t c= + + = + + . Suppl. Eq. 4 

 
t is the normalized distance used in the definition of g and comprises values between zero 

(indicating the position of the microtubule minus-end) and one (the microtubule plus-end).  Since 
the new coordinate system is a Cartesian system, the length L of the fitted curve is given by: 

 

( )( ) ( )( )
1

2 2' '
1 2

0

1m mL dt f t f t= + +∫ . Suppl. Eq. 5 

 
We obtain an analytical formula for the microtubules’ filament length: 

 
12

2 2
3/ 2

0

2 4 2ln 2
4 8

t

t

t tL t t t tα β αγ β α βα β γ α β γ
α α α

=

=

+ − +⎛ ⎞= + + + + + +⎜ ⎟
⎝ ⎠

 

with ( ) ( )2 2 2 2
1 2 1 1 2 2 1 24 , 4 ,a a a b a b b bα β γ= + = + = +  

Suppl. Eq. 6 

 

Setting-up the processing environment: a user’s guide 

 
This section shall serve as a brief technical protocol for the application of the processing 

routines to 2D or 3D microtubule contour data sets.  In order to set up the processing 
environment, we recommend the creation of a new directory in the processing machine’s file 
system.  The Matlab algorithms of the data processing package should be copied into this 
directory.  The routines will expect the tracing data sets to be located in separate subdirectories 
for independent experiments.  The data sets in these subdirectories are automatically detected 
and processed by our algorithms.  Essentially, an arbitrary number of experiments can be 
provided.  While directory names can also be chosen arbitrarily, the user should avoid the 
identifiers “contrast”, “data”, “graphs”, “mechanics”, “pausing” and “traces”, since these names 
correspond to output data directories that will be generated by the programs and will therefore 
not be scanned for valid data sets. 

 
An ASCII text file “microtubules.txt” must be present in each data sub-directory, which 

contains the number of microtubule contour data sets that are provided in this directory as plain 
text.  Furthermore, an ASCII text file “temporalSpacing.txt” must be provided in each sub-



directory, which contains the temporal spacing in the microscopy recordings (measured in 
seconds) for the corresponding experiment.  Finally, the user needs to provide the actual contour 
tracing data as ASCII text files.  These data files are labeled “xCoordinatesX.txt”, 
“yCoordinatesX.txt” and “zCoordinatesX.txt”, where X is the microtubule identifier and ranges 
from 1 to the number provided in “microtubules.txt”.  The layout of the contour files is as 
follows: Each row contains the temporal coordinate of the measurement in the first column and 
an arbitrary number of tracing points along the filament in the remaining columns (entered as 
natural numbers in the unit of pixels in the recordings).  The first spatial coordinate identifies the 
microtubule minus-end, while the last corresponds to the plus-end.  The data from an arbitrary 
number of time points can be entered in such a data file.  However, the spacing between each 
pair of subsequent temporal coordinates must be equal to the temporal spacing provided in 
“temporalSpacing.txt” (i.e.  spatial coordinates must be provided for all time points within the 
considered time interval).  While each row must have the same number of coordinate entries, 
different numbers of available tracing coordinates at the individual time points can be indicated 
by entering zeros in the remaining columns.  2D data can be considered by providing the 
corresponding contour data in the x- and y-coordinate files and defining a z-coordinate data file 
(“zCoordinatesX.txt”) with only zeros as spatial coordinates. 

 
After starting Matlab, the user can run most analyses (microtubule dynamic instability, 

microtubule elasticity and microtubule growth contrast) by switching to the processing directory 
and starting “completeAnalysis”.  The analysis of microtubule pausing requires additional pre-
processing by the program “populationStatistics” and is therefore not automatically started by 
“completeAnalysis”. 

 
“completeAnalysis” is a job processing function that requires six input parameters (in the 

following order): Parameter 1 is pixel size of the recordings (entered in µm).  Parameter 2 is the 
spatial error in the contour data (provided as the error in filament length in µm).  Parameter 3 is 
the spatial error in the microtubule plus-end position (in µm).  Parameter 4 is the range of the 
local second-order fit in the phase detection (measured in data points, as defined in [S3]).  
Parameter 5 is the identifier for the choice of the kinetic model and set to “0” for the two-state 
model or “1” for the four-state model.  Alternatively, by choosing “2” the four-state model is 
employed on the basis of the pausing definition by Brittle et al. [5].  Parameter 6 is the identifier 
for the module for dynamic speed switching (“0” disables the module, “1” enables the module). 

 
Finally, we would like to provide a simple example of an input data set.  We assume we 

wish to analyze one single experiment with two traced microtubules.  The temporal resolution in 
this experiment was e.g.  3 seconds (i.e.  every 3 seconds the entire 3D volume of the 
microtubule aster has been recorded).  First, we generate a new directory “processing” and copy 
the data analysis algorithms in this directory.  Next, we generate a sub-directory “contours” with 
two text files: a file “microtubules.txt” that contains the number 2 (2 microtubule contour data 
sets are provided) and a file “temporalSpacing.txt”, which contains the number 3 (corresponding 
to the temporal spacing in the recordings).  Finally, we provide six contour files in the same 
directory: “xCoordinates1.txt”, “yCoordinates1.txt”, “zCoordinates1.txt”, “xCoordinates2.txt”, 
“yCoordinates2.txt” and “zCoordinates2.txt”.  The layout of each set of three coordinate files 
should then be: 

 



t_start <minus_end_frame1> <coordinate2_frame1> <coordinate3_frame1> … 
t_start + 3 <minus_end_frame2> <coordinate2_frame2> <coordinate3_frame2> … 
t_start + 6 <minus_end_frame3> <coordinate2_frame3> <coordinate3_frame3> … 
… … … … … 

 
Here, t_start indicates the first time point of the time interval to be analyzed for the 

microtubule. Of course the dynamics of this particular microtubule could also be evaluated for n 
non-contiguous time intervals (which might be desirable e.g. if the imaging quality is not 
sufficiently good for tracing at intermediate time intervals) by simply providing n contour data 
sets with different microtubule identifiers. 

 
Derivation of the statistical error in the measurement of microtubule lengths 

 
There are three sources of errors in the microtubule length measurements: 1) the lateral and 

axial positioning errors for microtubule start points arising from the precision limits of the 
processing algorithm, 2) the lateral and axial positioning errors for microtubule end points 
arising from the microscope’s resolution as well as 3) an additional manual positioning error for 
microtubule end points due to the local signal-to-noise ratio in the data sets. 

 
For a given detection wavelength λ, a refractive index n and a numerical aperture NA, the 

formula for the diffraction limited lateral resolution r reads [S5]: 
 

( ) ( )3 2cos cos 2
r

n
λ
α α

=
− −

 with arcsin NA
n

α ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Suppl. Eq. 7 

 
For a detection wavelength of 515 nm (maximum in the emission spectrum of Alexa-488), 

a refractive index of 1.33 and a numerical aperture of 1.0 the resolution is therefore 288 nm. 
 

The lateral and axial positioning errors for the microtubule’s tip (a rather diffuse part of the 
microtubule) are affected by the microscope’s resolution limit, since the corresponding 
measurement is performed manually.  However, in order to render the manual end point tracking 
more reliable, an isotropic bi-cubic interpolation of the data sets is performed, resulting in a 
lateral and axial pixel size of 128 nm.  Prior to the rescaling, the axial pixel size is 700 nm.  
Thus, we obtain slightly more than two axial pixels per axial resolution unit (1500 nm) prior to 
rescaling.  The z-slice, which contains the brighter microtubule intersection, can be easily 
identified by eye in the corresponding two z-planes (approximately 15 pixels per axial resolution 
unit are provided after axial bi-cubic rescaling).  Thus, the original axial pixel size of 700 nm is a 
safe estimate of the axial contribution to the manual microtubule end point error.  The lateral 
situation is similar, since also slightly more than two pixels are provided per resolution unit (288 
nm).  However, since no additional bi-cubic interpolation is performed in these two dimensions, 
we assume the lateral resolution limit of 288 nm as the lateral contribution to the manual 
microtubule end point tracking.  Thus, the total error arising from the manual resolution-limited 

end point tracking is ( ) ( )2 2
tip,resolution 700 nm 288nm 757 nmσ = + = . 



Additionally, the detection of microtubule end points is hampered by the signal-to-noise 
level in the recorded data sets, resulting in an additional estimated positioning error of maximal 8 
pixels during end point tracking (corresponding to 8 x 129 nm = 1032 nm).  The resulting 
standard deviation equals to 3-1/2 x 1032 nm = 596 nm, if we assume a rectangular error 
distribution.  We obtain the total positioning error for the microtubule’s tip 

( ) ( )2 22 2
tip tip,resolution tip,noise 757 nm 596 nm 963nmσ σ σ= + = + = . 

 
Next, the lateral and axial positioning errors for microtubule start points are derived.  

These points are automatically computed by an algorithm, which approximates their positions by 
the centrosome’s center of mass.  The error in this calculation is determined by the precision 
limit in the recorded data sets.  Since the centrosome’s geometry is approximately rotationally 
symmetric, the precision in calculating its center of mass is considerably better than the actual 
resolution limit (e.g. [S6, S7]).  We derived an estimate for the error in the centrosome’s position 
by calculating the standard deviation of the detected position over the last 20 time points in an 
aster time-lapse data set recorded next to the polymer wall.  In this last time interval, the aster 
has a relatively stable position since many microtubules are attached to the plastic polymer wall.  
Hence, the resulting fluctuation in computing the centrosome’s centre is a safe estimate of the 
positional microtubule start point error.  The positional standard deviations result as 86 nm 
laterally and 36 nm axially.  The total error arising from the centre-of-mass calculation is 

( ) ( )2 2
start,centre-of-mass 86 nm 36 nm 93nmσ = + = . 

 
An additional positioning error is introduced in the automated axial processing of 

microtubule start points due to a discretization step in the processing algorithm.  As an 
approximation, the slice closest to the centrosome’s computed center of mass is defined as the 
slice that actually contains its center of mass.  Thus, the maximal error in the axial position is 
700 nm / 2 = 350 nm, since 700 nm is the axial pixel size prior to rescaling.  A standard 
deviation of 3-1/2 x 350 nm ≈ 202 nm has to be taken into account for the position detection of the 
microtubules’ starting points, assuming a rectangular distribution of the positioning error.  
Hence, the total error in the microtubule start point position is 

( ) ( )2 22 2
start start,centre-of-mass start,discretization 93nm 202 nm 222 nmσ σ σ= + = + = . 

 
The total error σlength in microtubule length measurements (accounting for the positioning 

errors of the microtubule’s start point and the microtubule’s tip) is: 
 

( ) ( )2 22 2
length start tip 963nm 222 nm 988nmσ σ σ= + = + ≈  Suppl. Eq. 8 

 

Derivation of the statistical error in the measurement of time intervals 

 
If a microtubule structure in the three-dimensional recording volume moves between two 

time points of a time-lapse, resulting in a different z-localization in the corresponding z-stacks, 
the calculated time interval does not represent the actual time spacing for this specific structure.  



Let tinterval be the time interval that passes between the recording of two subsequent image stacks 
and Nz-stack the number of frames in one image stack.  Accounting for a maximal fluctuation of 
one z-plane for a microtubule between two timepoints (empirical observation), the maximal error 
tfluctuation in the time spacing results in tfluctuation = tinterval / (Nz-stack – 1). 

 
For a time-lapse with a time unit of tinterval = 3.5 sec and Nz-stack = 28 images per z-stack, a 

maximal error of tfluctuation = 130 ms and a standard deviation of 3-1/2 x 130 ms = 75 ms result 
(assuming a rectangular error distribution).  Since the error in the time measurement for the 
process of data acquisition itself is smaller than 1 ms, it can be safely neglected and the total 
error σtime in time interval measurements results in σtime = 75 ms. 

 

Derivation of statistical errors in the analysis of microtubule elasticity 

 
Two sources of errors have to be taken into account in the determination of the persistence 

length.  The major contribution arises from the uncertainty in computing the microtubule tip 
deflection d.  In order to obtain a conservative estimate of this error, we considered the total 
positioning error of the tip tip 963nmσ = (see "Derivation of statistical errors in microtubule 
length measurements") rather than the statistical component along the normal axis with respect to 
the microtubule minus-end tangent.  In all persistence length analyses, deflection histograms 
were computed for two situations: In the first case, the measured deflections were binned.  In the 
second case, the tip positioning error was added to all measured deflections and the resulting data 
set was binned.  We then computed the difference in persistence lengths that were obtained from 
these two data sets.  This difference σp1 represents the worst-case error in the persistence length 
that can arise from the uncertainty of deflection measurements.  Additionally, we considered the 
error that is introduced by data binning.  For each bin of magnitude m, a statistical error of 
m n (with n contributing measurements to this bin) was taken into account.  The contribution 
of this error to the uncertainty in the fitting was computed and the total resulting error σp2 was 
considered as the error introduced by the data analysis itself.  The total error for any obtained 
persistence length is given by 2 2

1 2p pσ σ+ . 
 

In one analysis (see Figure 4d), we restricted the data set of deflection measurements to 
specific microtubule length intervals.  For this analysis, a third error source has to be taken into 
account.  Since statistics from microtubules of slightly different lengths are combined, a 
conservative estimate yields an additional error of 3a  (twice the standard deviation of the 
uniform microtubule length interval of the size a) in the filament length that is characterized by 
the obtained persistence length. 

  
Finally, we performed an additional test for statistical robustness in the analysis of the 

filament length dependency of the persistence length.  In order to perform a reliable fit, the 
underlying statistics must ensure sufficiently populated histograms.  In the calculation of the 
persistence length, one effect of too low statistics is the underestimation of the histogram’s 
width, thus resulting in an overestimation of the persistence length.  In order to assess this issue, 
we decreased the statistics for each data point to one-half and computed the corresponding 
persistence lengths.  The average absolute deviation of the resulting values as compared to the 



parameters that were obtained for the full statistics was 10 %.  For two data points, the 
persistence length increased when reducing the statistics, while it decreased for four other data 
points and remained constant (considering three digits) for the remaining two data points, 
indicating undirected statistical noise. 
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