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Figure S1 | RACE segmentation workflow and parameter sensitivity analysis 

 



 

 

Figure S1, related to Figure 1 | RACE segmentation workflow and parameter sensitivity analysis 
 
(A) The left column of operators shows the processing steps for seed detection. The right column 
shows the core processing steps for cell segmentation, which rely on the detected seed segments. 
An optional pathway based on nuclear image data (if available) is indicated by the shaded box. If 
no cell nuclei data is available, the dashed pathway (pointing to the enhanced membrane image) 
indicates the workflow for generating seed segments. The hollow arrowhead indicates an image 
inversion step and image data referenced in parentheses are described in more detail in Part 1 of 
Supplemental Experimental Procedures. Only the three parameters of the operators shown in 
dark gray shading are data-dependent and need to be adjusted for a new data set. Parameters of 
processing steps shown with light gray shading reflect basic settings related to microscope or 
experiment configuration (such as pixel size in the image data, etc.). All other pipeline 
components use default parameter settings, which were kept constant throughout this study. 
However, these parameters can optionally also be adjusted. 
(B-E) Sensitivity analysis of the core parameters of the RACE segmentation framework, using 
manual ground truth annotations in a Drosophila SiMView image data set (see also Table S2). 
The respective full valid parameter ranges are provided in square brackets. Panels (B), (D) and 
(E) were calculated using RACE (MS), i.e. using a membrane channel only and with heuristics 
disabled. Panel (C) was calculated using RACE (NS), i.e. using both membrane and nuclear 
channels and with heuristics disabled. For each of the analyses, one parameter was varied while 
the other parameters were set to the values listed in Table S2. Dashed lines indicate the 
respective optimal parameter settings used in Tab 1 of Table S3. The large plateau region visible 
in (C) enables the use of an adaptive threshold instead of a fixed threshold value. Note that seed 
extraction is performed using either membrane or cell nuclei image data, i.e. only one of the 
binary thresholds investigated in panels (B) and (C) is needed when executing the RACE 
algorithm. 



Figure S2 | Fast and accurate slice-based 2D segmentation 

 



 

 

Figure S2, related to Figure 1 | Fast and accurate slice-based 2D segmentation 
 
Illustration of the main processing steps performed prior to fusion of the 2D segments. 
Maximum intensity projections of 3D image stacks of Drosophila, mouse and zebrafish embryos 
recorded with SiMView light-sheet microscopy and confocal fluorescence microscopy are shown 
in panel (A). Based on the raw membrane image (B, xy-image is shown, i.e. an image slice 
oriented perpendicular to the microscope’s optical detection axis), a Hessian-based objectness 
filter is used to enhance membrane structures (C). Remaining holes in the cell membranes are 
repaired using iterative morphological closing with increasing structure element sizes (D). The 
actual segmentation is performed using a standard watershed algorithm on the 2D slices (E). The 
last row (F) shows the watershed pixels superimposed with the raw images. Image contrast has 
been adjusted for better visibility. 
Scale bars, 50 µm (A), 20 µm (B). 



Figure S3 | Efficient seed-based fusion of 2D segments to 3D cell shapes 

 



 

 

Figure S3, related to Figure 1 | Efficient seed-based fusion of 2D segments to 3D cell shapes 
 
Illustration of final segment fusion steps for 3D cell shape segmentation in cell membrane image 
data (A, xz-image is shown, i.e. an image slice oriented parallel to the microscope’s optical 
detection axis). The initial slice-based segmentation of the 2D morphological watershed operator 
(B) and the extracted seed segments are combined to reconstruct 3D cell shapes (C). 2D 
segments touching a seed segment are labeled with the unique seed identifier. Based on segment 
similarity across slices, 2D segments touching one of the labeled initialization segments are then 
iteratively merged to form complete 3D cell shapes, starting with the highest-scoring segments. 
In some cases, the 3D segmentation results (C) can be further improved by one of the two 
proposed fusion heuristics. Segments with few slices (indicated by * in panel (C)) are fused to 
their closest neighbor if the specimen-dependent maximum volume constraint is not violated by 
this merge. If the fusion of segments is suggested by the similarity-based fusion heuristic (D), 
two subcellular compartments produced in the initial seed-based segmentation (indicated by # in 
panel (C)) are fused to obtain the final 3D segmentation (E, F). Both fusion heuristics simply 
assign the same unique identifier to those segments that should be merged, thus producing a 
single corrected 3D cell shape. For specimens with diverse cell sizes, the fusion heuristics might 
not be able to further improve results (see e.g. the almost identical results obtained for the 
zebrafish and mouse panels shown before (C) and after (E) application of the fusion heuristics; 
see also Part 1 of Supplemental Experimental Procedures). We note that most of the small 
fragments visible in (E) and (F) are not over-segmentation artifacts but rather cell cross-sections 
belonging to cells whose centers are located outside the xz-slice shown here. 

Scale bar, 20 µm. 



Figure S4 | Comparative analysis of precision, recall, processing time and scalability 

 



 

 

Figure S4, related to Figure 1 |  Comparative analysis of precision, recall, processing time and 
 scalability 
 
(A, B) Comparison of segmentation quality obtained with ACME, MARS, EDGE4D and RACE. 
Segmentation quality was evaluated for a set of manually annotated images representing 
different model organisms (fruit fly embryo, mouse embryo) and microscopes (SiMView light-
sheet microscopy, confocal fluorescence microscopy). RACE achieved comparable or superior 
segmentation accuracy in all investigated scenarios and provides highest average performance 
across model organisms and imaging modalities. Precision (A) and recall (B) values were 
derived from the topological errors made by the algorithms, where the sum of split and added 
cells was considered as the false positive count and the sum of merged and missing cells was 
considered as the false negative count (Part 2 of Supplemental Experimental Procedures). 
Average performance achieved across all model organisms and microscopes is indicated by the 
values shown above the respective group of bars representing each algorithm. This comparison is 
also summarized in Figure 1B, which shows average false discovery rates (1 – precision) and 
average false negative rates (1 – recall). 
(C, D) Assessment of processing time (C) and voxel throughput (D) of ACME, MARS, 
EDGE4D, RACE (MS), RACE (NS), RACE (MS, GPU) and RACE (NS, GPU) for differently 
sized image regions taken from a Drosophila embryo image data set. The comparison includes 
image sizes 1316x628x111 (full embryo), 658x628x111 (half), 658x314x111 (1/4th), 
658x314x55 (1/8th), 328x314x55 (1/16th) and 328x156x55 (1/32nd). ACME, MARS and 
EDGE4D generally perform up-sampling of the input image data to isotropic voxel size in order 
to meet algorithmic requirements. The results of this comparison show that all versions of RACE 
perform fastest by a large margin as they use discrete combinatorial optimization over 2D 
watershed regions, directly operate on the anisotropic image data and employ highly 
parallelizable processing steps. Processing time of all versions of RACE and most of the other 
investigated methods scales linearly with the number of voxels in the input data set. The 
comparison of processing times of the CPU-optimized and GPU-accelerated implementations of 
RACE shows that the substitution of CPU-based modules with high-performance GPU-
accelerated modules for those processing steps representing the main computational bottlenecks 
further doubles the performance of our pipeline and enables real-time processing performance. 
Performance was measured on a computer workstation equipped with two Intel Xeon E5 CPUs 
at 3.1 GHz (16 cores in total), 192 GB RAM, an NVidia Tesla K20 GPU and Windows 7 
Professional 64-bit. The star (*) next to EDGE4D indicates that performance was measured on 
an Apple MacBook Pro equipped with an Intel Core i7 CPU at 2.3 GHz (4 cores in total), 16 GB 
memory and Mac OS X 10.9.5. We also tested EDGE4D on a high-end Mac Pro with two Intel 
Xeon E5 CPUs at 2.7 GHz but found that processing time did not change significantly, since 
very few operations are multi-threaded and time spent on I/O is minimal. Thus, EDGE4D 
processing time essentially depends only on the performance of a single CPU core. 



Figure S5 | Accuracy of cell shape information extracted from confocal Drosophila images 

 

 



 

 

Figure S5, related to Figure 5 |  Accuracy of cell shape information extracted from confocal 
 Drosophila images 
 
Similar to Figure 5, this figure shows an analysis of the accuracy of cell shape features 
automatically extracted by RACE, but for a Drosophila embryo imaged with a confocal 
fluorescence microscope. Please see the legend of Figure 5 for a description of this analysis. 
(A) Histogram of the absolute feature value deviation between automatic segmentation results 
and ground truth annotations, using a bin width of 5 %. The deviation of cell shape feature 
values is on average below 9 % (Tab 6 of Table S3). 
(B) Bar plots of mean feature values measured across multiple regions of interest for both ground 
truth and automated RACE cell segmentation results. Error bars correspond to one standard 
deviation across the group of cells used for this analysis. We note that both average values and 
standard deviations are almost identical for RACE and GT annotations when combining data 
collected from small groups of cells. 
(C) Bar plot of frequency of topological errors in RACE cell segmentation results. Topological 
errors are categorized as split, merged, added and missing cells. 
(D) Deviation between RACE and GT annotations for six types of cell shape parameters, shown 
as a function of the sample size used for estimating average feature values. The special cases 
n = 1 and n = 113 show mean deviation of cell shape features at the single-cell level and 
averaged across all annotated cells, respectively. For settings in between these two special cases 
(n = 10, n = 25 and n = 50), 1,000 sub-groups were randomly selected from the data pool of all 
possible sub-groups containing matching cell pairs and deviation results were then averaged over 
all selected sub-groups. We note that measuring average cell shape features even for only a 
relatively modest number of cells already decreases the deviation between automated results and 
ground truth significantly. Additional features and results are presented in numerical form in Tab 
6 of Table S3. 



Figure S6 | Comparison of Drosophila whole-embryo tissue anisotropy maps 

 



 

 

Figure S6, related to Figure 6 | Comparison of Drosophila whole-embryo tissue anisotropy maps 
 
(A) Maximum-intensity projection of an image stack showing a membrane-labeled Drosophila 
embryo (left) and visualization of tissue anisotropy reconstructions across the Drosophila 
embryo (remaining panels) obtained with the segmentation methods RACE (NS, JI, SSH), 
ACME, EDGE4D and MARS, respectively. The 3D image stack was acquired at 3.25 hours after 
egg laying (AEL), using SiMView light-sheet microscopy. The calculation and color mapping of 
anisotropy levels was performed as described in Part 4 of Supplemental Experimental 
Procedures. 

(B) Ground truth anisotropy map obtained from a manually segmented image region (first panel 
on the left side, corresponding to the region marked by the green rectangle in (A)) and the 
corresponding maps obtained by automatic image segmentation (remaining panels). 

Scale bar, 50 µm. 



Figure S7 | Segmentation quality in gastrulating Drosophila wild-type and bnt mutant embryos 

 



 

 

Figure S7, related to Figure 7 |  Segmentation quality in gastrulating Drosophila wild-type and 
 bnt mutant embryos 
 
Evaluation of the accuracy of cell shape features automatically extracted by RACE, using 
segmentation data from Drosophila wild-type (A) and bnt mutant (B) embryos for the period 
3.00-3.75 h AEL. At each time point a group of 20-30 cells was manually annotated and median 
values (colored bars) as well as standard deviation (error bars) of cell shape features across the 
group were extracted and visualized side-by-side with the respective results obtained from 
automatic reconstructions performed with RACE. Cell shape features investigated in this 
evaluation include cell volume (number of voxels), cell perimeter (number of surface voxels in 
xy-, xz- and yz-planes at the cell centroid location), mediolateral (ML) cell size, anteroposterior 
(AP) cell size and dorsoventral (DV) cell size. Moreover, mediolateral-vs.-anteroposterior cell 
shape anisotropy (ML-AP anisotropy), the mediolateral-vs.-dorsoventral cell shape anisotropy 
(ML-DV anisotropy) and dorsoventral-vs.-anteroposterior cell shape anisotropy (DV-AP 
anisotropy) were calculated as described in Part 4 of Supplemental Experimental Procedures. 
Median values as well as standard deviations across the data pool generally correspond very well 
between automatic segmentation data and manual ground truth annotations. The largest 
deviations are observed for features that rely fundamentally on axial segmentation quality (cell 
volume, XZ perimeter, DV length, ML-DV anisotropy and DV-AP anisotropy). In these cases, 
however, manual data annotation itself was frequently problematic (and, in some extreme cases, 
ambiguous) due to low axial resolution, low image quality as a result of light scattering and 
aberrations in deeper tissue regions, weak signals from en-face membranes in multilayered 
tissues and high background levels arising from auto-fluorescence. We note that such limitations 
in image quality inevitably constrain cell shape quantifications, irrespective of the performance 
of the image analysis methodology and can only be addressed at the level of the image 
acquisition process, using advanced microscope designs for improving axial resolution and 
isotropy (Chhetri et al., 2015). 
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Table S3, related to Figure 1 |  Segmentation quality comparison and analysis of cell shape 
 information accuracy 
 
Note: Due to its size, this table is provided as a separate multi-tab Excel file. 
 



 

 

Supplemental Movie Legends 

Movie S1, related to Figure 2 | Detection of seed points in Drosophila 
 
Visualization of seed point detection for a three-dimensional image stack of a membrane- and 
nuclei-labeled Drosophila embryo imaged with SiMView light-sheet microscopy. The movie 
shows the entire specimen volume slice-by-slice: raw membrane (red) and nuclei (green) image 
data, binary image of the seeds detected in the nuclear channel, and overlay of the seeds with 
membrane and nuclear channels, respectively (from left to right). 

Note: The movie is provided in QuickTime format. QuickTime and related codecs are freely 
available at http://www.apple.com/quicktime/download/. 
 
 
Movie S2, related to Figure 3 | Cell segmentation in Drosophila, zebrafish and mouse embryos  
 
Visualization of segmentation results obtained for three-dimensional image stacks of membrane-
labeled Drosophila (Part 1), mouse (Part 2) and zebrafish (Part 3) embryos acquired with 
SiMView light-sheet microscopy as well as a membrane-labeled Drosophila embryo acquired 
with confocal fluorescence microscopy (Part 4). The movie shows the entire specimen volume 
(Parts 1-3) or the volume of approximately half the embryo (Part 4) slice-by-slice: raw image 
data (left), a superposition of raw image data and detected segment boundaries (middle) and the 
cell label image with a randomized color scheme (right). 

Note: The movie is provided in QuickTime format. QuickTime and related codecs are freely 
available at http://www.apple.com/quicktime/download/. 
 
 
Movie S3, related to Figure 7 | Tissue anisotropy mapped at the single-cell level in Drosophila 
 wild-type and bnt mutant embryos 
 
Visualization of tissue anisotropy on the ventral and dorsal sides of Drosophila wild-type (Part 
1) and bnt mutant (Part 2) embryos during early embryonic development. Images were acquired 
in 15-second (Part 1) and 30-second (Part 2) intervals using SiMView light-sheet microscopy, 
starting shortly before the onset of gastrulation at 3 hours after egg laying (AEL). The movie 
shows maximum-intensity projections of background-corrected image data from the ventral and 
dorsal sides of the embryos (left) as well as the corresponding segmentation results obtained with 
RACE (right) over 3-hour (Part 1) and 1.5-hour (Part 2) time windows. The segmentation results 
are visualized using surface rendering. The color code indicates the level of mediolateral-vs.-
anteroposterior cell shape anisotropy and was chosen to highlight in particular cell shape changes 
in response to ventral furrow formation: cells that are elongated along the anteroposterior axis 
are shown in cyan; uniformly shaped cells are shown in purple; and cells that are elongated along 
the mediolateral axis are shown in bright magenta. The segmentation data and associated 



 

 

annotation of cell shape anisotropy reveal local changes in cell shape in the course of large-scale 
tissue reorganization and epithelial folding, including the formation of the ventral furrow, the 
formation of the cephalic furrow and germ band extension. Calculation and color mapping of 
anisotropy levels were performed following the procedure described in Part 4 of Supplemental 
Experimental Procedures. 

Note: The movie is provided in QuickTime format. QuickTime and related codecs are freely 
available at http://www.apple.com/quicktime/download/. 
 
 
Movie S4, related to Figure 7 | Side-by-side comparison of tissue anisotropy in Drosophila 
 wild-type and bnt mutant embryos 
 
Side-by-side visualization of tissue anisotropy in wild-type (left) and bnt mutant (right) 
Drosophila embryos during early embryonic development. Each embryo is shown from both 
ventral and dorsal perspectives. Images were acquired in intervals of 20 seconds (wild-type) and 
30 seconds (bnt) using SiMView light-sheet microscopy, starting shortly before the onset of 
gastrulation at 3 hours after egg laying (AEL). The movie shows segmentation results that are 
visualized using surface rendering. The color code indicates the level of mediolateral-vs.-
anteroposterior cell shape anisotropy and was chosen to highlight in particular cell shape changes 
in response to ventral furrow formation: cells that are elongated along the anteroposterior axis 
are shown in cyan; uniformly shaped cells are shown in purple; and cells that are elongated along 
the mediolateral axis are shown in bright magenta. This visualization highlights several 
differences in early cell behavior between wild-type and bnt mutant embryos: in particular, 
shortly after the onset of gastrulation, mediolateral-vs.-anteroposterior cell shape anisotropy near 
the ventral midline rapidly approaches peak levels in the wild-type embryo, whereas 
corresponding blastoderm cells in the bnt mutant embryo exhibit less pronounced mediolateral 
cell elongation. Moreover, ML-AP anisotropy relaxes very slowly towards pre-furrow baseline 
levels after peak anisotropy levels are reached in the bnt mutant embryo. Calculation and color 
mapping of anisotropy levels were performed following the procedure described in Part 4 of 
Supplemental Experimental Procedures. 

Note: The movie is provided in QuickTime format. QuickTime and related codecs are freely 
available at http://www.apple.com/quicktime/download/. 
 
 
Movie S5, related to Figure 8 |  Joint reconstruction of cell lineages and cell morphology in early 
 Drosophila development 
 
Automated reconstruction of cell lineages and cell morphology in an early Drosophila embryo 
using the TGMM algorithm (Amat et al., 2014) and RACE, respectively. The imaging 
experiment underlying this video was performed with a SiMView light-sheet microscope. 
Imaging started shortly before the onset of gastrulation at 2 hours after egg laying (AEL) and 



 

 

image stacks of both cell nuclei and cell membranes were acquired every 20 seconds. Following 
image acquisition and multi-view image fusion, cell tracking was performed with TGMM using 
the fluorescently labeled cell nuclei. Information about segmented nuclei and their temporal 
associations were then propagated as seed points to the RACE framework. Finally, cell shapes 
were segmented by RACE using the fluorescently labeled cell membranes. The video shows 
maximum-intensity projections of background-corrected nuclei and membrane image data for the 
ventral side of the Drosophila embryo (left) as well as the corresponding segmentation results 
obtained with our segmentation algorithm for both ventral and dorsal sides of the embryo (right). 
The color code applied to the segmentation results was initialized in the first frame, using a color 
gradient from anterior to posterior, and was then propagated to subsequent frames using the cell 
tracking information. 

Note: The movie is provided in QuickTime format. QuickTime and related codecs are freely 
available at http://www.apple.com/quicktime/download/. 



 

 

Supplemental Software 

Software S1, related to Figure 1 |  RACE cell segmentation framework for Windows, Mac OS X 
 and Ubuntu 
 
This software archive contains our cell segmentation framework RACE compiled for Windows 
64-bit (folder “RACE_Windows”), Mac OS X (folder “RACE_MacOSX”) and Ubuntu (folder 
“RACE_Ubuntu”), including image test data from a membrane- and nuclei-labeled Drosophila 
embryo. The archive also contains the RACE user guide (folder “User_Guide”) and the RACE 
video tutorial in Flash and QuickTime formats (folder “Video_Tutorial”). 

Note: The source code of the RACE framework is hosted as a Git repository and available from 
https://bitbucket.org/jstegmaier/race. 
 

 



 

 

Supplemental Experimental Procedures 

Part 1 | RACE algorithmic design 

Overview and general design principles 

Several algorithms for cell segmentation have been presented in recent years. A common initial 
step in most methods is the enhancement of locally plane-like structures. Starting with simple 
approaches such as Gaussian and median filtering for noise removal, gradient-based methods 
such as edge indicator functions or directional coherence enhancement filters can be used to 
emphasize cell membrane structures (Adiga et al., 2006; Hodneland et al., 2009; Zanella et al., 
2010). More complex approaches are based on the eigensystem of the Hessian matrix of each 
pixel at different regularization scales, namely Partial Differential Equation (PDE)-based 
approaches like anisotropic diffusion filtering (Kriva et al., 2010; Perona and Malik, 1990; Pop 
et al., 2013) or objectness filters that exploit geometrical properties of the eigenvalues to enhance 
shapes of a specific dimensionality in the images (Frangi et al., 1998; Michelin et al., 2013; 
Mosaliganti et al., 2012). In the field of connectomics, where similar membrane segmentation 
problems exist, machine learning classifiers, such as random forests or deep neural networks, 
deliver remarkable membrane reconstruction quality (Andres et al., 2012; Ciresan et al., 2012; 
Huang and Jain, 2013). However, we did not consider such classification-based approaches as 
possible solutions to our field of application because of the very high computational cost and the 
substantial time needed to obtain ground truth for training the classifiers. 

In most cases, the edge-enhanced images are still not ideal for automated segmentation because 
of discontinuities in the cell membrane signal that might be caused by inhomogeneous label 
expression levels, limited axial resolution or en-face membranes that are oriented parallel to the 
plane imaged in the microscope (Mosaliganti et al., 2012). To further refine the enhanced cell 
membrane images and close gaps in the structures, methods such as the viscous watershed 
transform have been successfully applied (Olivier et al., 2010; Vachier and Meyer, 2005). 
Another option for closing gaps in the membrane signal is perceptual grouping achieved by 
tensor voting (Michelin et al., 2013; Mosaliganti et al., 2012) or deformable models adapted to 
membrane segmentation (Pop et al., 2013). Finally, based on the enhanced membrane image, the 
actual segments are commonly extracted using topological methods such as the watershed 
transform (Michelin et al., 2013; Mosaliganti et al., 2012; Olivier et al., 2010), graph-cuts (Funke 
et al., 2012) or PDE-based methods such as subjective surfaces (Zanella et al., 2010), advective 
level sets (Mikula et al., 2011) or active meshes (Pop et al., 2013). A common drawback of these 
methods is the fact that they are computationally expensive because they perform a series of 
global 3D image processing operations, such as anisotropic diffusion or watershed, in order to 
reconstruct cell shapes. Many of these methods furthermore require up-scaling of the image data 
along the z-axis (i.e. the detection axis of the microscope) in order to obtain isotropic resolution 
for optimal segmentation results. This limits their applicability to the terabytes of anisotropic 
image data generated per experiment by next-generation fluorescence light microscopy methods. 



 

 

In this study, we systematically developed a highly efficient image analysis pipeline, termed 
RACE, which reliably extracts cell shapes directly from anisotropic microscopy images with 
fluorescently labeled cell membranes. First, we use a combination of median filtering, Hessian-
based ridge enhancement and iterative morphological closings to improve imperfect membrane 
structures in a similar fashion to previous algorithms mentioned above (Figure S1A). However, 
we restrict most of the operations either to 2D slices or to local 3D neighborhoods to avoid costly 
computational operations. Second, inspired by the automated reconstruction of neural circuits in 
the field of connectomics, we then extract meaningful 2D cell regions from the enhanced 
membrane image slices and combine these using discrete combinatorial optimization techniques 
to generate complete 3D cell shape segmentations (Funke et al., 2012; Liu et al., 2014). 
However, the requirements for segmenting individual cells in an entire embryo are different from 
those in connectomics, where magnification levels are significantly higher and the investigated 
sub-cellular structures are not compact objects but typically span rather large regions of the 
acquired volume. We therefore present specialized seeding techniques for the fusion of 
individual 2D segments using either the membrane images themselves or, optionally, additional 
cell nuclei image data. Finally, we present two heuristics that further improve segmentation 
results. 
High computational efficiency of all involved processing steps was one of our design priorities, 
ensuring suitability of the pipeline for large-scale time-lapse data sets of embryonic 
development. As a result of our strategy to directly process the raw, anisotropic 3D image data 
produced by the microscope and systematically employ efficient processing operators, we obtain 
a speed-up of up to two orders of magnitude compared to existing methods, without trading off 
segmentation quality. The computational framework presented here also consistently achieves 
higher segmentation accuracy across multiple biological model systems and imaging modalities 
compared to state-of-the-art methods (Figures 1B, 6C, S4A-B and S7, Tabs 1-3 of Table S3). 
This combination of high speed and high accuracy enables, for the first time, real-time 
reconstructions of cell shape dynamics in live imaging experiments at the scale of entire 
developing embryos comprising up to tens of thousands of cells. In the following, we describe 
the RACE processing workflow step by step. 
 
Noise removal and Hessian-based membrane enhancement 

Median filtering represents a simple pre-processing method for eliminating Poisson noise. We 

apply a 2D median filter to the raw membrane image memI  (Figure S2A-B) with a radius that is 
scaled according to the relative physical spacing of voxels along all image dimensions. This 

produces the median-filtered image medI (not shown). 

We then use a second pre-processing step to enhance membrane structures in the median-filtered 
image and to further reduce background noise based on specific properties of the eigenvalues of 
the Hessian matrix at each pixel location. Originally developed to enhance vessel-like structures 
in 3D images (Frangi et al., 1998), Antiga et al. recently presented a generalization of this 
approach for enhancing M-dimensional shapes in N-dimensional images (Antiga, 2007). 



 

 

Membrane structures in 3D images correspond to 2D objects, i.e. plane-like structures in a local 
neighborhood, and can therefore ideally be reconstructed using 2M  and 3N  in the 
generalized objectness function: 
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where 321    are the sorted eigenvalues of the Hessian matrix at each pixel location. The 

eigenvalues are calculated on a Gaussian-smoothed image using a standard deviation   that 

corresponds to the regularization scale for the Hessian. 2
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1  S  is the Frobenius norm 

of the Hessian matrix, 32 / BR  and  ,  are user-defined weights (Antiga, 2007). The 

factor containing the AR  expression found in the original formulation is omitted, as it is equal to 

1 for the parameterization of 2M  and 3N . In those cases where 23    and S  is large, 

the response of this filter is high, i.e. locally plane-like structures such as membranes are 
enhanced, while noise in background regions is efficiently suppressed if S  is close to zero. By 
evaluating Eq. (1) in a  -neighborhood around each voxel, a Hessian-based edge-enhanced 

image heeI  is obtained (Figure S2C).  
  
Iterative morphological closing 

The edge-enhanced image heeI  is subsequently processed using an adapted pre-processing step 
known as the viscous watershed transform (Vachier and Meyer, 2005). This strategy has been 
successfully applied to membrane segmentation (Olivier et al., 2010); however, previously 
presented approaches segmented relatively small numbers of cells and required manual 
interaction to place markers for a seeded watershed-based segmentation. The basic idea of the 
viscous watershed transform is to iteratively apply morphological operators with increasing radii 
of the structure element before applying the common watershed transform to the image. This 
idea can be formalized by the following recursion: 
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where cl
rI is the iteratively closed input image heeI  up to radius r  and the  -operator represents 

the morphological closing of image cl
rI 1  with structure element rS . 

This pre-processing step simulates the flooding of the topographic landscape with a viscous fluid 
and helps reducing leakage among disconnected structures, such as locations with poor 
membrane signal (Figure S2D). 

In our cell segmentation pipeline, we use an Euclidean sphere as a structure element with radii 
scaled according to the physical voxel size. Instead of using physically correct modeling of a 
viscous fluid as proposed by Vachier et al. (Vachier and Meyer, 2005), we restrict the range of 



 

 

structure element radii to a predefined range. Throughout the experiments performed in this 
study, a set of radii }4,3,2,1{r  turned out to be sufficient. The maximum radius can be 

determined empirically and should be constrained to the size of the smallest compartments that 
need to be segmented as individual cells. Using larger radii causes over-smoothing of object 
contours and increases processing time unnecessarily owing to the larger filter kernels. 
Additionally, we avoid filtering in border regions where the kernel does not fit completely inside 
the image, in order to improve performance of the used neighborhood iterators. As specimens are 
typically padded sufficiently well in most imaging experiments, skipping border regions usually 
does not affect segmentation results. 
 
Slice-based watershed segmentation 

In our experience, performing 3D watershed segmentation in pre-processed images cl
rI  does not 

produce high-quality results in most cases, as it has a tendency to merge segments and/or lead to 
“leakage” of cells with membrane gaps into background regions. Even computationally 
expensive methods such as ACME (Mosaliganti et al., 2012) were not able to segment cells 
sufficiently well after pre-processing owing to limitations arising from the low axial resolution in 
some of our tested images. To improve performance of the 3D watershed, existing approaches 
transform input images to an isotropic representation, e.g. using linear interpolation schemes 
(Michelin et al., 2013; Mosaliganti et al., 2012). However, this up-scaling dramatically increases 
image size, memory consumption and processing time, and still does not entirely solve the 
leakage problem. Thus, in order to be able to directly extract segmentation data from anisotropic 
images, we employ slice-based 2D watershed segmentation with a subsequent fusion step based 
on discrete combinatorial optimization. 

Applying the standard watershed transform in 2D to the pre-processed image cl
rI  yields a 

segmentation image wsI  with high 2D segmentation quality in each image slice (Figure S2E-F), 

as a direct result of the relatively high lateral resolution in typical microscopy image data sets. In 
addition, the processing of individual 2D slices can be perfectly parallelized by distributing slices 
to available CPU cores without a need for communication between concurrent threads. 
 
Seed detection for initializing the merging of 2D watershed regions across slices 

To initialize the fusion of 2D regions, we employ a seeding approach. Seeds are either single 
pixels or small 3D segments that should be fully enclosed by single cells, and each seed should 
have a unique label assigned. Depending on the available image data, RACE provides different 
methods for seed extraction. In the simplest case, if only the membrane channel is available 
(Figure 2A), the inverted membrane-enhanced image can be used as a pseudo-nuclei channel 
(Figure 2B). Subsequently, the image has to be binarized and connected regions can be 
separated using a thresholded Euclidean distance map (EDM) on the inverted, binarized pseudo-
nuclei image or by extracting regional maxima from the EDM using the H-maxima transform 



 

 

(Soille, 2003) (Figure 2C). We use a fast, linear-time algorithm to calculate the Euclidean 
distance transform (Maurer Jr et al., 2003). Labeling the connected components of the extracted 

maxima of the EDM yields the seed image msI  for the seed-based segment fusion (Figure 2D). 

If nuclear image data is available, RACE can take advantage of this information to improve 
segmentation quality though a more accurate seed detection. With nuclear image data at hand, 
seeds can be extracted in a similar way as for membrane image data, but skipping the initial 
image inversion and directly calculating the EDM and the corresponding maxima from the 

thresholded, Laplacian-of-Gaussian (LoG) filtered raw image logI  (Figure 2G-H). The seed 

points detected in nuclear image data will be denoted by nsI  (Figure 2I). We note that in 

contrast to our previous work on cell nuclei segmentation (Stegmaier et al., 2014), the seeds 
created by RACE are small 3D segments instead of single pixels, which allows us to directly 
initialize multiple 2D slices with a single seed label. 

For the quality comparisons discussed below we used the extracted H-maxima as seed points. 
However, if cell sizes are fairly uniform throughout the data set, this step can be substituted by 
simple binary thresholding of the EDM image to further improve processing speed. If nuclei 
sizes are heterogeneous but the distance between individual nuclei is sufficiently large, the seed 
detection step can be performed on a down-sampled version of the respective images to improve 
speed without trading off accuracy. Even in high-speed light-sheet microscopy imaging 
experiments, the RACE segmentation framework is capable of real-time performance by either 
using down-sampled seed detection in combination with our GPU-accelerated code modules 
(Figure S4C-D) or by using our fast CPU-optimized implementation of the H-maxima transform 
based on the C++ library Nscale (Teodoro et al., 2013). 
 
Intersection calculation 

Intersections of slice pairs in the 3D label image stack wsI obtained by slice-by-slice application 
of the watershed transform are identified using a label histogram for each pair of neighboring 

slices. Considering two successive slices with )max( ws
zIN   labels in slice z  and 

)max( 1
ws
zIM   labels in slice 1z , a label matrix with dimensions )1()1(  MNL  is 

created. The size increment in each dimension is due to the background label, which is usually 
set to zero. By iterating over all pixels in the image, the bins in the 2D histogram are incremented 

using the labels in ws
zI  as a row indicator and the labels ws

zI 1  as a column indicator. After the 

histogram has been successfully filled, each non-zero entry of the 2D histogram corresponds to 
an intersection of two segments. The total number of pixels in the intersection is equal to the bin 
value. At this stage it is usually helpful to discard very unlikely correspondences based on 
overlap percentage, minimum size or intensity features. In addition to calculating the 
intersections of neighboring 2D slices, we calculate the intersections of all 2D segments with the 

seed image msI  or nsI , respectively. Each of the 2D segments that intersects with one or more 



 

 

seeds is labeled with the unique seed label that has maximum overlap with the segment. All 2D 
segments that are not touching a seed are temporarily labeled with the background label and will 
be merged with labeled segments in the next step. Moreover, to reduce the amount of false 
positive detections, small seed segments consisting only of a few pixels can be efficiently 
suppressed using a minimum size criterion. 
 
Segment fusion 

Based on the calculated intersections and identified seeds, 2D segments are combined to 
complete 3D cell shapes (Figures 1A and S3). For segments that are already intersecting a seed 
the respective seed label is assigned. In the next step, all intersections that contain a labeled 
segment are added to a queue, which is sorted by intersection similarity in descending order. The  
intersection similarity for two sets of pixels BA,  can be based on, for instance, the Jaccard index 

( BABA  / ), the minimum relative overlap ( )/,/min( BBAABA  ) or on a classification 

score of a trained intersection classifier. Here we used the Jaccard index, since it (1) performs 
well in practice, (2) can be directly obtained from the intersection histogram and (3) does not 
require any training for parameter tuning. Starting with the highest-scoring intersection, the 
respective seed label of the labeled segment is propagated to the unlabeled segment. For each 
newly labeled segment, its intersections with unlabeled segments are inserted into the sorted 
queue using a binary search. Processed intersections are removed from the queue and the fusion 
process continues until the queue is empty. This fusion procedure is very efficient since it 
operates in a sparse graph connecting 2D watershed regions across slices. 
 
Fusion heuristics 

In the case of perfect seeding, the number of detected cells should match the ground truth. 
However, in a more realistic scenario, such as when dealing with elongated cell or nuclei shapes, 
the seeding approach likely produces multiple seeds for a single cell, yielding split cells in the 
final segmentation (Figure S3C). We thus use two post-processing heuristics to further improve 
cell segmentation results. 

The first correction heuristic uses a minimum-spanning tree (MST) obtained by a clustering of 
2D segments similar to Kruskal’s algorithm, based on an intersection similarity measure such as 
the Jaccard index or the minimum relative overlap. In contrast to the seeded fusion described in 
the previous section, new nodes are introduced to the segmentation tree by using the most similar 
intersections (Figure S3D). Furthermore, we prohibit merges that would introduce a local 
extremum in the mean intensity profile along the fused segments. This rule is based on our prior 
knowledge that no true cell should contain an intermediate local maximum in the membrane 
mean intensity feature or a local minimum for the nucleus mean intensity feature. In cases where 
both parts of an intersection are already labeled, i.e. where the segments are part of two separate 
nodes in the segmentation tree, we allow further merging only if no local extremum in the mean 
intensity profile along the merged segment would be introduced. The actual correction of the 



 

 

seed-based segmentation approach is performed by comparing the segments of the similarity-
based fusion to the segments of the seed-based fusion. The similarity-based fusion has a strong 
tendency to over-segmentation. However, it minimizes under-segmentation due to the local 
extremum rule. If a single segment in the similarity-based fusion matches two or more segments 
in the seed-based fusion, this is a strong indicator that the segments of the seed-based fusion 
should be combined into a single segment. 

Similar to existing methods (Fernandez et al., 2010; Khan et al., 2014), we employ a second 
heuristic based on a minimum volume criterion, i.e. we take into consideration that it is unlikely 
that correctly detected cells comprise only a few voxels. To fix such over-segmentation errors, 
we further merge cell fragments with the most likely match in their local neighborhood using the 
available intersection information. Depending on the expected range of cell volumes in the 
investigated biological specimen, a minimum expected volume can easily be determined. To 
prevent erroneous merging by this heuristic, two segments are only fused if the new segment is 
still smaller than a predefined maximum size. Unlike existing methods, our heuristics are not 
operating on the image level but exclusively on already extracted segmentation data. Thus, the 
time required for this refinement step is almost negligible compared to the other modules of the 
RACE algorithm. 
 
Implementation details 

The membrane segmentation pipeline was implemented in C++ using the Insight Toolkit SDK 
(http://itk.org/) and the Qt SDK (http://qt-project.org/). We successfully compiled and tested the 
software on multiple operating systems, including Windows 7, Ubuntu 12.04 LTS, Scientific 
Linux 5.8 and Mac OS X 10.9.3. We also provide high-performance GPU-accelerated 
implementations of RACE based on CUDA (https://developer.nvidia.com/cuda-zone) to further 
optimize processing speed and eliminate memory bottlenecks, specifically for median filter, 
Hessian-based ridge enhancement and iterative morphological closing. The GPU 
implementations can be enabled optionally if hardware requirements are met. Furthermore, we 
make use of the C++ library Nscale (Teodoro et al., 2013), which depends on the OpenCV SDK 
(http://opencv.org), to speed up the CPU-based watershed transform and the extraction of H-
maxima. In order to make the RACE computational framework easily accessible to the 
community, we provide precompiled executables for several major operating systems as well as 
a graphical user interface for easy parameter adjustment and data processing. Our open-source 
implementation is licensed under the GNU-GPL and is freely available for download at 
https://bitbucket.org/jstegmaier/race. 



 

 

Part 2 | Performance evaluation 

Ground truth generation and validation procedure 

We manually annotated representative image regions of SiMView light-sheet microscopy 
recordings of Drosophila and mouse embryos and confocal fluorescence microscopy image data 
of a Drosophila embryo. Dense ground truth segmentations were created using the Fiji plugin 
TrackEM2 to label 2D segments (Cardona et al., 2012) and we developed a custom-made 
MATLAB user interface for the manual fusion of the resulting 2D segments. Owing to the 
substantial efforts involved in generating manual annotations as well as limitations with respect 
to the image size that other algorithms can handle, images were cropped to smaller regions 
containing ~50-100 cells for annotation. We then processed several of these smaller image 
regions from various locations within each specimen. The values listed in the result tables 
represent average performance over all image regions in each image stack. In order to avoid 
errors resulting from edge effects in border regions, we first segmented larger image regions and 
then cropped the result to the respective regions selected for quality assessment, under 
consideration of the maximum filter kernel diameter of all involved processing operators. 
Finally, since ACME produced many tiny segments at the membrane junctions, we also added a 
size constraint, i.e. only segments larger than 300 voxels were considered in the quality 
comparison. 
 
Validation measures 

For a quantitative comparison of segmentation quality of our algorithm and other existing 
methods, we used the measures proposed by Coelho et al. (Coelho et al., 2009): Rand Index (RI), 
Jaccard Index (JI), Normalized Sum of Distances (NSD) and Hausdorff Metric (HM). The Rand 
Index measures the fraction of pixel pairs where labels produced by automatic segmentation and 
manual annotation agree (higher values are better). Similar to the RI, the Jaccard Index measures 
the ratio of matching pixel pairs to non-matching pixel pairs (higher values are better). The 
Hausdorff Metric is defined as the maximum of the set of minimal distances of two compared 
shapes (lower values are better) (Bamford, 2003). Finally, the Normalized Sum of Distances 
reflects the average distance of labeled pixels that do not agree between automated segmentation 
and manually annotated reference image (lower values are better) (Coelho et al., 2009). 
Moreover, we distinguished between added, missing, split and merged segments among the 
topological errors in the automatic segmentation. We used this information to calculate precision 
and recall by considering added and split cells as false positives and merged and missing cells as 
false negatives. 
 
Selection of comparative methods 

We compared our algorithm to three different state-of-the-art cell segmentation methods. First, 
we compared it to the ACME method proposed by Mosaliganti et al. This method uses Hessian-
based ridge enhancement with tensor voting for closing remaining gaps in the membrane signal, 



 

 

followed by a watershed transform on the distance map of the inverted, thresholded tensor voting 
image (Mosaliganti et al., 2012). The second approach (MARS) proposed by Fernandez et al. 
uses a framework based on alternate sequential filtering for pre-processing and a size-dependent 
iterative 3D watershed transform for actual segmentation (Fernandez et al., 2010). The third 
method, EDGE4D by Khan et al., uses a combination of histogram-based contrast adjustment, 
Difference-of-Gaussian filtering, 3D rank filters for edge enhancement and a watershed 
segmentation that is guided by morphological criteria for cells (Khan et al., 2014). This method 
optionally makes use of an additional nuclear channel to optimize the segmentation results. In 
contrast to our algorithm, these other methods provide high-quality segmentation results only if 
image data are first up-scaled to isotropic 3D spatial sampling, which for typical light 
microscopy data sets artificially increases image size by a factor of 5 to 10. Therefore, in order to 
ensure a fair comparison of the different methods with respect to the actual image size used in 
each scenario, we determined the processing speed in voxels per second, in addition to reporting 
the required total processing time in seconds. An overview of the acronyms used to refer to the 
various methods included in this comparison as well as a detailed list of the parameter settings 
employed for each data set are provided in Tab 7 of Table S3 and in Table S2, respectively. 

For all methods, we manually fine-tuned parameters in order to produce and report optimal 
results. In most cases, extensive parameter search methods were not applicable owing to 
restrictions imposed by graphical user interfaces or the substantial processing time required for 
algorithm execution. 
 
Assessment of cell segmentation quality 

The segmentation quality measures for the SiMView Drosophila dataset are listed in Tab 1 of 
Table S3. Our implementation produced the best results with respect to RI, NSD and HM 
measures. Regarding recall values, RACE (NS, *) achieved the best results, closely followed by 
the ACME method. However, ACME failed to provide similarly high precision values and 
produced multiple false positive detections in background regions. The highest precision values 
were obtained by EDGE4D, RACE (MS, *), RACE (NS, SSH) and RACE (NS, JI, SSH). 
Although MARS produced only a few splits and missing cells, many cells were merged and 
added to the segmentation results, resulting in low recall and precision values for this data set. 
Overall, using an additional nuclear channel clearly helped with achieving high recall and 
precision values, as indicated by the results obtained with RACE (NS, *) and EDGE4D. 

The mouse data set (Tab 2 of Table S3) has higher diversity in cell shapes and represents a more 
challenging scenario for all algorithms. The values obtained for RI, JI and HM measures were 
comparable for all investigated methods. Interestingly, the additional nuclear channel did not 
help improve results for this data set. This is due to the fact that nuclei are more densely packed 
in the mouse embryo data set and that it is hard to perform optimal cell nuclei detection, which 
affects the seeding for membrane segmentation. Even during visual inspection of the images by a 
human, there was uncertainty in deciding on the exact nucleus location in some cases. 



 

 

Presumably, this effect led to the slightly increased NSD values for RACE (NS, *). The best 
recall value was achieved by ACME, closely followed by RACE (MS) and RACE (MS, JI). The 
best precision values for this data set were also achieved using membrane-based seeding 
techniques, namely RACE (MS, *), MARS and ACME. The small segment heuristic efficiently 
increased the precision of RACE (MS, SSH) and RACE (MS, JI, SSH) by 0.06 points. 

The confocal data set of an early Drosophila embryo (Tab 3 of Table S3) contained a higher 
noise level than its SiMView counterpart. This caused the seed detection method used by MARS 
to miss many cell centroids, which resulted either in many merged regions or in many missed 
cells depending on parameter settings. Despite the exclusion of small segments caused by the 
junction issue of the ACME method, the precision of 0.77 was not satisfactory for this data set. 
Furthermore, it only reached a recall value of 0.70, which was mainly caused by background 
signal leakage and several merged cells. As nuclei were again nicely separated in this data set, 
nuclei-based seed detection methods delivered the best results. EDGE4D as well as each of our 
nuclei-based versions of RACE provided the highest scoring results with respect to both 
precision and recall. As the initial seeding of RACE (NS) was already almost perfect, the fusion 
heuristics did not further improve results in this case and even slightly increased the number of 
merged nuclei (RACE (NS, SSH), RACE (NS, JI, SSH)). In contrast, the precision of RACE 
(MS) greatly benefited from the small segment fusion heuristic (RACE (MS, SSH), RACE (MS, 
JI, SSH)), which increased precision by almost 20 percent. Although RACE (MS, JI) did not 
show a noticeable improvement, the combination of both heuristics RACE (MS, JI, SSH) 
delivered the best results among the membrane-based seed detection methods. 

In all scenarios, the highest F-score (geometric mean of precision and recall) was always 
achieved by RACE. In addition to the quantitative comparison, an exemplary qualitative 
comparison of segmentation accuracy in images of a Drosophila embryo is provided in Figure 4. 
Furthermore, the quantitative segmentation quality of all algorithms across all investigated 
scenarios is graphically summarized in Figure S4A-B.  
 
Performance comparison of the investigated approaches 

For all data sets presented here, RACE was the fastest by a large margin. Processing time 
increased by 6 % on average when using an additional nuclear channel for seed detection owing 
to the additional Laplacian-of-Gaussian filtering and read operations (Figure S4C-D, Tabs 1-3 
of Table S3). Although MARS provided high processing speeds when applied directly to the 
anisotropic images, it produced poor results without image up-scaling (data not shown). Using 
differently sized regions of an early Drosophila embryo, we showed that our method scales 
linearly with the number of voxels in the image data, i.e. it is well suited even for larger 
specimens such as entire mouse or zebrafish embryos (Figure S4C-D). Most other investigated 
methods also showed a linear relationship between processing time and voxel count in the image 
data. However, their use of global 3D image processing algorithms, such as watershed and tensor 
voting, and their dependency on isotropic image data to obtain accurate results increased 



 

 

processing time by up to two orders of magnitude compared to our algorithm. ACME also 
required a large amount of memory, which precluded processing even of relatively small image 
regions on a computer workstation with 128 GB of RAM. The results shown in Figure S4C-D 
and Table S1 indicate that our GPU-accelerated version of RACE efficiently eliminates some of 
the main bottlenecks of the pipeline, such as median filtering, Hessian-based objectness filtering 
and iterative morphological closing. Moreover, our CPU-optimized code for H-maxima filtering 
and 2D watershed further accelerates image processing and eliminates the two remaining 
bottlenecks. The combined performance improvements achieved with our GPU and Nscale 
modules allows us to segment a Drosophila embryo at the full spatial resolution provided by the 
SiMView light-sheet microscope (1316 x 628 x 111 voxels, 16-bit depth, 175 MB) in less than 
20 seconds. Our method therefore allows real-time analyses of developing model organisms, 
even in the context of high-speed imaging with state-of-the-art light-sheet microscopy. All 
performance measurements, except for the EDGE4D benchmarks, were performed on a 
computer workstation with two Intel Xeon E5 CPUs at 3.1 GHz (16 cores in total), 196 GB 
RAM, NVidia Tesla K20 GPU and Windows 7 Professional 64-bit. EDGE4D was tested on an 
Apple MacBook Pro with Intel Core i7 CPU at 2.3 GHz (4 cores in total), 16 GB RAM and Mac 
OS X 10.9.5. We also tested EDGE4D on a high-end Mac Pro with two Intel Xeon E5 CPUs at 
2.7 GHz but found that processing time did not change significantly, since very few operations 
are multi-threaded and time spent on I/O is minimal. Thus, processing time essentially depends 
only on the performance of a single CPU core in this case. 
 
 



 

 

Part 3 | Instructions for using the RACE segmentation framework 

Step-by-step protocol, troubleshooting guide and RACE video tutorial 

We provide text and video materials that explain and demonstrate how the RACE cell 
segmentation framework can be applied to new image data, including a detailed step-by-step 
protocol (Box 1 in the RACE user guide provided in Software S1), a troubleshooting guide (Box 
2 in the RACE user guide provided in Software S1) and a RACE video tutorial (folder 
“Video_Tutorial” in Software S1). 
 
Building the framework from the sources 

The C++ implementation of the RACE segmentation algorithm is available from 
http://www.bitbucket.org/jstegmaier/race/. We take advantage of the CMake build tool to 
generate project files for various operating systems that make it easy to work with the compiler 
of your choice (http://www.cmake.org/). This tool is used to configure the Insight Toolkit (ITK) 
libraries and to generate the related project files for both ITK and the segmentation executable 
itself. ITK is freely available for download from http://www.itk.org/. Moreover, the Qt libraries 
are required and can be obtained from http://qt-project.org/ (specifically, the QtCore and 
QtWidgets modules are required). Detailed installation instructions for ITK and Qt are provided 
on the respective webpages. For development and software testing, we used CMake v3.0.0, ITK 
v4.3 and Qt v5.2 under Windows 7 Professional 64-bit using Microsoft Visual Studio 2012 and 
its associated C++ compiler. The software has also been successfully compiled and tested under 
Windows 8.1, Ubuntu 12.04 LTS, 14.04 LTS, Scientific Linux 5, 6 and Mac OS X 10.9.3. 
 
Notes: 

 For processing TIFF files larger than 4GB it is necessary to have a BigTIFF-compatible 
libtiff version installed and to enable the ITK CMake flag ITK_USE_64BIT_IDS 
during ITK makefile generation (see http://bigtiff.org/). Furthermore, the flag 
ITK_USE_REVIEW needs to be enabled. 

 For processing large images, ITK and Qt libraries and executables need to be compiled as 64-
bit versions. 

 When observing errors related to missing Qt headers or libraries, check if the header and 
library paths have been properly set by CMake. Otherwise, add “QTDIR/include/”, 
“QTDIR/include/QtCore/” to the header search path and “QTDIR/lib/”, 
“QTDIR/bin/” to the library search path. Furthermore, confirm that “qtmain.lib” and 

“Qt5Core.lib” are listed as additional dependencies in the Visual Studio project linker 
settings. 

 On Windows systems, we recommend installing ITK at most two sub-folders away from the 
system root. Otherwise path name length limits of the file system may be exceeded. 



 

 

 For faster compilation of ITK the following options can be disabled: BUILD_EXAMPLES, 

BUILD_DOCUMENTATION, BUILD_SHARED_LIBS and BUILD_TESTING. 

 If you would like to use the GPU-accelerated version of the pipeline, the CUDA Toolkit is 
needed as well (https://developer.nvidia.com/cuda-toolkit). 
  

Compiling the sources 

After installation and compilation of all prerequisites, it should be possible to compile the 
application. This can be done with the CMake build tool and a compiler of your choice using the 
CMakeLists.txt located in the folder PROJECTROOT/Project/CMakeQt5. Therefore, 

the source path of CMake has to be set to PROJECTROOT/Project/CMakeQt5/ and the 

build path has to be set e.g. to PROJECTROOT/Project/Buildx64/ (folder names are 
denoted relative to the installation directory). If ITK, Qt or CUDA are not found automatically, 
make sure to redirect CMake to the paths the respective libraries are located at. After successful 
Makefile generation using CMake it should be possible to compile the segmentation algorithm, 
e.g. using the make command within a Unix terminal or building the generated Visual Studio 
project files. 
 
Application example 

Once code generation is complete and the executable has been successfully built, the program 
can be started via the Unix terminal application with the call ./XPIWIT < input.txt or in 

the Windows command prompt using XPIWIT.exe < input.txt, where input.txt is a 
text file that determines (1) the input and output parameters for the executable, (2) an XML 
pipeline to process and (3) additional parameters. Note that the executable itself is called without 
parameters but all inputs are piped either directly or using a file. The application expects 
information about the following input parameters in the input.txt text file: 
 
--output PROJECTROOT/Example/Results/ 
--input 0, PROJECTROOT/Example/Data/Membrane/Drosophila_c=00_t=0010.tif, 3, float 
--input 1, PROJECTROOT/Example/Data/Nuclei/Drosophila_c=02_t=0010.tif, 3, float 
--xml PROJECTROOT/Example/membraneSegmentationDrosophilaMS.xml 
--seed 0 
--lockfile off 
--subfolder filterid, filtername 
--outputformat imagename, filtername 
--end 

 
The most important parameters are the output path (line 1), the input paths (lines 2 and 3) and the 
path of the XML file (line 4). Always use “/” as a folder separator instead of “\”, even on 
Windows systems. The remaining parameters can be left unchanged. The Example folder 
contains three small 3D data sets showing labeled nuclei and membranes in a Drosophila 
embryo. Input files for the compiled executable as well as XML pipeline files for segmentation 



 

 

and for GPU version are also provided. Make sure to adjust the absolute paths within the input 
files according to the specific location on your disk. If program execution was successful, the 
specified output folder should contain a log file including processing time, parameters and 
pipeline components as well as the resulting image data. All parameters can be adjusted in the 
file PROJECTROOT/Example/membraneSegmentationDrosophila*.xml using a 
simple text editor. A comprehensive list with available filter options as well as the description of 
parameters can be requested with the call XPIWIT.exe --filterlist myfilters.xml 

on Windows and ./XPIWIT --filterlist myfilters.xml on Unix-based systems, 
respectively. 



 

 

Part 4 | Visualization and analysis of tissue anisotropy in Drosophila gastrulation 

In order to analyze and visualize cell shape changes during ventral furrow formation in 
Drosophila gastrulation, a directed shape anisotropy measure was computed. After image 
segmentation with RACE using nuclei-based seeding and data correction with fusion heuristics, 
we fitted a 3D ellipsoid to the outer shell of the segmented embryo. We calculated the width w , 
height h  and depth d  of each cell by individually projecting each segment onto the mediolateral 
tangent, the anteroposterior tangent and the local normal vector of the ellipsoid (corresponding to 
the dorsoventral axis at locations close to the ventral furrow), respectively. Tangents were 
calculated at the location of each cell centroid projected onto the ellipsoid surface. Using the 
resulting cell dimensions, we calculated the directed shape anisotropy measure as follows: 
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Following this definition, an anisotropy value of 0 corresponds to identical cell width and cell 
height, whereas negative values indicate an elongation along the anteroposterior axis and 
positive values indicate an elongation along the mediolateral axis. This measure is thus 
particularly well suited to follow cell shape changes related to ventral furrow formation, since 
sensitivity is optimized for shape deformations parallel or perpendicular to the ventral furrow. In 
order to optimize contrast in the visualization of anisotropy values across the embryo shown in 
Figures 6A, 7B, S6 and Movies S3-S4, we restricted color-coding of anisotropy values to the 
range [−1; 1.5]. A quantitative analysis of changes in cell shape anisotropy, cell dimensions and 
cell volume as a function of time was carried out by analyzing segmentation data in an 80-µm-
wide corridor along the entire length of the ventral furrow (“ROI 1” in Figure 6B) and a 
50 × 50 × 60 µm3 sub-volume in wild-type and bnt mutant Drosophila embryos (green rectangle 
in Figure 7B). 
Moreover, complementing the general segmentation quality metrics defined in the previous 
section, we also quantitatively assessed the accuracy of RACE segmentation data in the specific 
context of tissue invagination and related changes in cell shape anisotropy patterns at the whole-
embryo level. To this end, we manually segmented a representative section of the ventral furrow 
of a Drosophila embryo (“ROI 2” in Figure 6A, green rectangle in Figure S6). All cells in this 
region were binned according to the centroid location along the mediolateral axis, using a bin 
size of 50 pixels (20 µm). To prevent false positive detections in interior regions of the embryo 
from introducing a possible bias in our measurements and side-by-side performance comparison 
shown in Figure 6C, we only included automatically detected segments overlapping with ground 
truth segments. Owing to the substantial computational requirements of some of the methods 
included in the comparison (ACME, EDGE4D, MARS), the large number of adjustable 
parameters (EDGE4D) and the limited automation capabilities inherent to the use of a graphical 
user interface (EDGE4D), framework parameters were optimized manually using small image 



 

 

regions of the selected test image and subsequently used for whole-embryo segmentation. 
Manual parameter optimization of ACME, MARS and EDGE4D was initialized using the default 
parameters recommended in the respective descriptions of the algorithms. Parameters were then 
optimized for the test image data by systematically inspecting intermediate results produced in 
each processing step.  
To assess segmentation quality over time in both wild-type and bnt embryos, we manually 
labeled 11 representative regions in both data sets (containing at least 20 cells each), extracted 
parameter distributions for the cell shape features outlined above and compared median values 
and standard deviations of these distributions for automatic reconstructions performed with 
RACE and ground truth annotations (Figures 7, S7, Movies S3-S4). 
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