Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Betzig Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

115 Publications

Showing 21-30 of 115 results
07/01/19 | Augmin accumulation on long-lived microtubules drives amplification and kinetochore-directed growth.
David AF, Roudot P, Legant WR, Betzig E, Danuser G, Gerlich DW
Journal of Cell Biology. 2019 Jul 01;218(7):2150-68. doi: 10.1083/jcb.201805044

Dividing cells reorganize their microtubule cytoskeleton into a bipolar spindle, which moves one set of sister chromatids to each nascent daughter cell. Early spindle assembly models postulated that spindle pole-derived microtubules search the cytoplasmic space until they randomly encounter a kinetochore to form a stable attachment. More recent work uncovered several additional, centrosome-independent microtubule generation pathways, but the contributions of each pathway to spindle assembly have remained unclear. Here, we combined live microscopy and mathematical modeling to show that most microtubules nucleate at noncentrosomal regions in dividing human cells. Using a live-cell probe that selectively labels aged microtubule lattices, we demonstrate that the distribution of growing microtubule plus ends can be almost entirely explained by Augmin-dependent amplification of long-lived microtubule lattices. By ultrafast 3D lattice light-sheet microscopy, we observed that this mechanism results in a strong directional bias of microtubule growth toward individual kinetochores. Our systematic quantification of spindle dynamics reveals highly coordinated microtubule growth during kinetochore fiber assembly.

View Publication Page
01/01/20 | Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans.
Bai X, Melesse M, Sorensen Turpin CG, Sloan D, Chen C, Wang W, Lee P, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen B, Cheerambathur D, Bembenek JN
Development. 2020 Jan;147(1):1-16. doi: 10.1242/dev.181099

While cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant embryonic divisions and found several reproducibly altered parameters at different stages. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, cytokinesis is implemented in a specialized way during epithelial polarization and Aurora B has a new role in the formation of the apical surface.

View Publication Page
09/20/16 | Bessel beam plane illumination microscope.
Betzig E
USPTO. 2016 Sep 20;B2:

A microscope has a light source for generating a light beam having a wavelength, λ, and beam-forming optics configured for receiving the light beam and generating a Bessel-like beam that is directed into a sample. The beam-forming optics include an excitation objective having an axis oriented in a first direction. Imaging optics are configured for receiving light from a position within the sample that is illuminated by the Bessel-like beam and for imaging the received light on a detector. The imaging optics include a detection objective having an axis oriented in a second direction that is non-parallel to the first direction. A detector is configured for detecting signal light received by the imaging optics, and an aperture mask is positioned.

View Publication Page
03/22/91 | Breaking the diffraction barrier: optical microscopy on a nanometric scale.
Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL
Science. 1991 Mar 22;251(5000):1468-70. doi: 10.1126/science.251.5000.1468

In near-field scanning optical microscopy, a light source or detector with dimensions less than the wavelength (lambda) is placed in close proximity (lambda/50) to a sample to generate images with resolution better than the diffraction limit. A near-field probe has been developed that yields a resolution of approximately 12 nm ( approximately lambda/43) and signals approximately 10(4)- to 10(6)-fold larger than those reported previously. In addition, image contrast is demonstrated to be highly polarization dependent. With these probes, near-field microscopy appears poised to fulfill its promise by combining the power of optical characterization methods with nanometric spatial resolution.

View Publication Page
03/22/91 | Breaking the diffraction barrier: optical microscopy on a nanometric scale. (With commentary)
Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL
Science. 1991 Mar 22;251(5000):1468-70. doi: 10.1126/science.251.5000.1468

In near-field scanning optical microscopy, a light source or detector with dimensions less than the wavelength (lambda) is placed in close proximity (lambda/50) to a sample to generate images with resolution better than the diffraction limit. A near-field probe has been developed that yields a resolution of approximately 12 nm ( approximately lambda/43) and signals approximately 10(4)- to 10(6)-fold larger than those reported previously. In addition, image contrast is demonstrated to be highly polarization dependent. With these probes, near-field microscopy appears poised to fulfill its promise by combining the power of optical characterization methods with nanometric spatial resolution.

Commentary: Introduced the adiabatically tapered single mode fiber probe to near-field scanning optical microscopy which, together with shear force feedback, made the technique a practical reality. Although earlier claims of superresolution via near-field microscopy existed for nearly a decade, this paper was the first to convincingly break Abbe’s limit with visible light, as demonstrated by reproducibly resolving known, complex nanoscale patterns having features separated by much less than the wavelength. Whereas our fiber probe and shear force technologies were soon widely adopted and key to many novel applications (see above), the earlier methods proved to be technological dead ends, never achieving the results of their original claims. This experience taught me the most valuable lesson of my career: while it’s bad to bullshit others, it’s even worse to bullshit yourself. It’s a lesson sadly unheeded by many current practitioners of superresolution microscopy.

View Publication Page
04/24/13 | Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes.
Grimm JB, Sung AJ, Legant WR, Hulamm P, Matlosz SM, Betzig E, Lavis LD
ACS Chemical Biology. 2013 Apr 24;8(6):1303-10. doi: 10.1021/cb4000822

Fluorogenic molecules are important tools for advanced biochemical and biological experiments. The extant collection of fluorogenic probes is incomplete, however, leaving regions of the electromagnetic spectrum unutilized. Here, we synthesize green-excited fluorescent and fluorogenic analogues of the classic fluorescein and rhodamine 110 fluorophores by replacement of the xanthene oxygen with a quaternary carbon. These anthracenyl "carbofluorescein" and "carborhodamine 110" fluorophores exhibit excellent fluorescent properties and can be masked with enzyme- and photolabile groups to prepare high-contrast fluorogenic molecules useful for live cell imaging experiments and super-resolution microscopy. Our divergent approach to these red-shifted dye scaffolds will enable the preparation of numerous novel fluorogenic probes with high biological utility.

View Publication Page
09/30/21 | Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging.
Li T, Fu T, Wong KK, Li H, Xie Q, Luginbuhl DJ, Wagner MJ, Betzig E, Luo L
Cell. 2021 Sep 30;184(20):5107. doi: 10.1016/j.cell.2021.08.030

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.

View Publication Page
Ji LabBetzig LabSvoboda Lab
01/03/12 | Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex.
Ji N, Sato TR, Betzig E
Proceedings of the National Academy of Sciences of the United States of America. 2012 Jan 3;109:22-7. doi: 10.1073/pnas.1109202108

The signal and resolution during in vivo imaging of the mouse brain is limited by sample-induced optical aberrations. We find that, although the optical aberrations can vary across the sample and increase in magnitude with depth, they remain stable for hours. As a result, two-photon adaptive optics can recover diffraction-limited performance to depths of 450 μm and improve imaging quality over fields of view of hundreds of microns. Adaptive optical correction yielded fivefold signal enhancement for small neuronal structures and a threefold increase in axial resolution. The corrections allowed us to detect smaller neuronal structures at greater contrast and also improve the signal-to-noise ratio during functional Ca(2+) imaging in single neurons.

View Publication Page
03/31/23 | Characterization, Comparison, and Optimization of Lattice Light Sheets
Gaoxiang Liu , Xiongtao Ruan , Daniel E. Milkie , Frederik Görlitz , Matthew Mueller , Wilmene Hercule , Alison Kililea , Eric Betzig , Srigokul Upadhyayula
Science Advances. 2023 Mar 31:. doi: 10.1126/sciadv.ade6623

Lattice light sheet microscopy excels at the non-invasive imaging of three-dimensional (3D) dynamic processes at high spatiotemporal resolution within cells and developing embryos. Recently, several papers have called into question the performance of lattice light sheets relative to the Gaussian sheets most common in light sheet microscopy. Here we undertake a comprehensive theoretical and experimental analysis of various forms of light sheet microscopy which both demonstrates and explains why lattice light sheets provide significant improvements in resolution and photobleaching reduction. The analysis provides a procedure to select the correct light sheet for a desired experiment and specifies the processing that maximizes the use of all fluorescence generated within the light sheet excitation envelope for optimal resolution while minimizing image artifacts and photodamage. Development of a new type of “harmonic balanced” lattice light sheet is shown to improve performance at all spatial frequencies within its 3D resolution limits and maintains this performance over lengthened propagation distances allowing for expanded fields of view.

View Publication Page
03/09/92 | Combined shear force and near-field scanning optical microscopy (With commentary)
Betzig E, Finn PL, Weiner JS
Applied Physics Letters. 1002 Mar 9;60:

A distance regulation method has been developed to enhance the reliability, versatility, and ease of use of near-field scanning optical microscopy (NSOM). The method relies on the detection of shear forces between the end of a near-field probe and the sample of interest. The system can be used solely for distance regulation in NSOM, for simultaneous shear force and near-field imaging, or for shear force microscopy alone. In the latter case, uncoated optical fiber probes are found to yield images with consistently high resolution.

Commentary: To exploit the evanescent field that is the source of high resolution in near-field microscopy, the probe must be exceptionally close to the sample:  10 nm away for 30-50 nm resolution. Here we introduced a distance regulation mechanism based on transverse shear forces between the end of a dithered near-field probe and the sample, which permitted even samples of modest topography to be imaged. Simple, reliable, noninvasive, and applicable to a wide range of samples from whole fixed cells to semiconductor devices, shear force microscopy was a key enabling technology for near-field optics, and soon widely implemented.

View Publication Page