Fly Light Split-GAL4 Driver Collection
Imaging Data for the Split-GAL4 Driver Collection
The data presented on the Split-GAL4 collection site are the work of the Janelia FlyLight Project Team, the Descending Interneuron Project Team, and the laboratories of Gerald M. Rubin, Yoshi Aso, Kristin Branson, Gwyneth Card, and Barry Dickson.
You may use images from this website under a CC BY 4.0 license. Please acknowledge the FlyLight Project Team at Janelia Research Campus for the use of the images. Please also cite the appropriate paper from below depending on the Release the imagery is contained in.
The split-GAL4 lines can be requested from the Bloomington Drosophila Stock Center by performing a search and then clicking on the "Order from Bloomington Stock Center" button on the page for the desired line. You will then be able to add the line to the cart for ordering. Some stocks may no be available at BDSC (the "Order from" button will not appear). For information on these stocks, please contact us at flybank@janelia.hhmi.org.
A description of the image processing pipeline and the imagery types it produces (and alignment templates it uses) is available. For questions about sample creation/processing/imaging or about this website, please email flylight@janelia.hhmi.org.
For opening and viewing h5j and LSM stacks:
Use Fiji (http://fiji.sc). Fiji has a built-in plugin (H5J_Loader_Plugin-1.0.4) for opening stack in h5j format, a "visually lossless" compression format.
For some releases, imagery data may be downloaded in bulk. There are several ways to download files from Amazon S3. To download in bulk (such as all images for a line or entire release), we suggest Cyberduck, available at https://cyberduck.io/download.
Launch Cyberduck and use the instructions below:
- Click on the "Open Connection" button.
- For "Server", enter: s3://janelia-flylight-imagery.s3.amazonaws.com
- Verify Amazon S3 is automatically selected in the top pulldown menu.
- Check the button for Anonymous Login.
- Click the "Connect" button.
- You can now navigate the directory structure, and download directories/files by dragging and dropping.
In publications, please attribute the data presented on this site to one of the following papers, as follows:
For the overall strategy and methods used to produce the split-GAL4 lines for the mushroom body neurons (MB Paper 2014):
Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T., Dionne, H., Abbott, L., Axel, R., Tanimoto, H., & Rubin, G. M. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife. 2014; 3: elife.04577. DOI: 10.7554/eLife.04577 View lines
List of split-GAL4 driver lines for the neurons in the mushroom body:
Download elife-04577-supp1-v1.xlsx
For each driver line, the source of the enhancer fragments used to make the p65ADZp and ZpGAL4DBD constructs are given. Most enhancer fragments are from the collection of GAL4 lines described in Jenett et al. (2012). All ZpGAL4DBD constructs are inserted into attP2; the insertion sites of the p65ADZp constructs are indicated by the letter at the end of the driver name as follows: A, su(Hw)attP8; B, attP40; C, VK00027. The cell types in which expression is seen with each driver are indicated in the matrix; the level of expression in each cell type is indicated by the gray scale (see "Materials and methods"). Note that observed expression depends to some extent on the reporter construct used (see Figure 2-figure supplement 1 for an example). The data in this matrix were based on imaging with pJFRC225-5xUAS-IVS-myr::smGFP-FLAG in VK00005. The VK00005 insertion site supports high-expression levels (Pfeiffer et al., 2012); many of the split-GAL4 drivers show more cell type specificity using reporters in attP18 (see the accompanying paper for examples) (Aso et al., 2014).
For split-GAL4 lines for the Lobula Columnar (LC) visual projection neurons (LC Paper):
Wu, M., Nern, A., Williamson, W. R., Morimoto, M. M., Reiser, M. B., Card, G. M., & Rubin, G. M. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife. 2016; 5: elife.21022. DOI: 10.7554/elife.21022 View lines
For the empty split-GAL4 line (spGAL4 control) (Hampel 2015):
Hampel, S., Franconville, R., Simpson, J. H., & Seeds, A. M. A neural command circuit for grooming movement control. eLife. 2015; 4: elife.08758. DOI: 10.7554/eLife.08758 View lines
For comparison of the properties of memories formed by optogenetic activation of individual DAN cell types (Aso&Rubin 2016):
Aso, Y., & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. eLife. 2016; 5: elife.16135. DOI: 10.7554/eLife.16135 View lines
For split-GAL4 lines for Ellipsoid Body neurons from the 'walking-more' brain-behavior map (Robie 2017):
Robie, A. A., Hirokawa, J., Edwards, A. W., Umayam, L. A., Lee, A., Phillips, M. L., Card, G. M., Korff, W., Rubin, G. M., Simpson, J. H., Reiser, M. B., & Branson, K. Mapping the Neural Substrates of Behavior. Cell. 2017; 170: 393-406.e28. DOI: 10.1016/j.cell.2017.06.032 View lines
For new split-GAL4 lines used for the characterization of LPLC2 anatomy and function (LPLC2_paper):
Klapoetke, N. C., Nern, A., Peek, M. Y., Rogers, E. M., Breads, P., Rubin, G. M., Reiser, M. B., & Card, G. M. Ultra-selective looming detection from radial motion opponency. Nature. 2017; 551: 237-241. DOI: 10.1038/nature24626 View lines
For split-GAL4 lines expressed in key components of a circuit that computes directional selectivity in the visual motion pathway (T4_inputs_paper):
Strother, J. A., Wu, S., Wong, A. M., Nern, A., Rogers, E. M., Le, J. Q., Rubin, G. M., & Reiser, M. B. The Emergence of Directional Selectivity in the Visual Motion Pathway of Drosophila. Neuron. 2017; 94: 168-182.e10. DOI: 10.1016/j.neuron.2017.03.010 View lines
For split-GAL4 lines for descending sensory-motor pathways (Descending Neurons 2018):
Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W., & Card, G. M. The functional organization of descending sensory-motor pathways in Drosophila. eLife. 2018: 34272. DOI: 10.7554/elife.34272 View lines
For split-GAL4 lines for PB, NO, and AB neurons (Wolff 2018):
Wolff, T., & Rubin, G. M. Neuroarchitecture of the Drosophila central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. J Comp Neurol. 2018: cne.24512. DOI: 10.1002/cne.24512 View lines
For split-GAL4 lines for Lateral Horn (Lateral Horn 2019):
Dolan, M., Frechter, S., Bates, A. S., Dan, C., Huoviala, P., Roberts, R. J., Schlegel, P., Dhawan, S., Tabano, R., Dionne, H., Christoforou, C., Close, K., Sutcliffe, B., Giuliani, B., Li, F., Costa, M., Ihrke, G., Meissner, G., Bock, D., Aso, Y., Rubin, G., & Jefferis, G. Neurogenetic dissection of the Drosophila innate olfactory processing center. eLife. 2019: 43079. DOI: 10.7554/eLife.43079 View lines
Split-GAL4 drivers for the subset of PPM3 cluster dopamine neuron (Gao 2019):
Gao, R., Asano, S. M., Upadhyayula, S., Pisarev, I., Milkie, D. E., Liu, T., Singh, V., Graves, A., Huynh, G. H., Zhao, Y., Bogovic, J., Colonell, J., Ott, C. M., Zugates, C., Tappan, S., Rodriguez, A., Mosaliganti, K. R., Sheu, S., Pasolli, H. A., Pang, S., Xu, C. S., Megason, S. G., Hess, H., Lippincott-Schwartz, J., Hantman, A., Rubin, G. M., Kirchhausen, T., Saalfeld, S., Aso, Y., Boyden, E. S. & Betzig, E. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science. 2019; 363: science.aau8302. DOI: 10.1126/science.aau8302 View lines
For split-GAL4 lines for neural circuitry linking mating and egg laying (oviDN 2020):
Wang, F., Wang, K., Forknall, N., Patrick, C., Yang, T., Parekh, R., Bock, D., & Dickson, B. J. Neural circuitry linking mating and egg laying in Drosophila females. Nature. 2020; 579: 101-105. DOI: 10.1038/s41586-020-2055-9 View lines
For split-Gal4 lines used for the characterization of LC6 glomerulus interneurons (LC6 downstream 2020):
Morimoto, M. M., Nern, A., Zhao, A., Rogers, E. M., Wong, A. M., Isaacson, M. D., Bock, D. D., Rubin, G. M. & Reiser, M. B. Spatial readout of visual looming in the central brain of Drosophila. eLife. 2020; 9: elife.57685. DOI: 10.7554/elife.57685 View lines
For split-GAL4 lines used for TAPIN-Seq gene expression profiling of optic lobe neurons (Optic lobe TAPIN-Seq 2020):
Davis, F. P., Nern, A., Picard, S., Reiser, M. B., Rubin, G. M., Eddy, S. R. & Henry, G. L. A genetic, genomic, and computational resource for exploring neural circuit function. eLife. 2020; 9: elife.50901. DOI: 10.7554/eLife.50901 View lines
For split-Gal4 lines used for the characterization of a neural circuit regulating ovipositor extrusion (DNp13 2020):
Wang, F., Wang, K., Forknall, N., Parekh, R. & Dickson, B. J. Circuit and Behavioral Mechanisms of Sexual Rejection by Drosophila Females. Current Biology. 2020: j.cub.2020.07.083. DOI: 10.1016/j.cub.2020.07.083 View lines
For split-GAL4 lines for neural circuits in the fly compass (Turner-Evans 2020):
Turner-Evans, D. B., Jensen, K. T., Ali, S., Paterson, T., Sheridan, A., Ray, R. P., Wolff, T., Lauritzen, J. S., Rubin, G. M., Bock, D. D. & Jayaraman, V. The Neuroanatomical Ultrastructure and Function of a Biological Ring Attractor. Neuron. 2020: j.neuron.2020.08.006. DOI: 10.1016/j.neuron.2020.08.006 View lines
For split-GAL4 lines for neural circuit mechanisms of sexual receptivity in Drosophila females (VPO 2020):
Wang, K., Wang, F., Forknall, N., Yang, T., Patrick, C., Parekh, R. & Dickson, B. J. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature. 2020: s41586-020-2972-7. DOI: 10.1038/s41586-020-2972-7 View lines
For split-GAL4 lines for neural circuitry underlying female aggression (Schretter et al. 2020):
Schretter, C. E., Aso, Y., Robie, A. A., Dreher, M., Dolan, M., Chen, N., Ito, M., Yang, T., Parekh, R., Branson, K. M. & Rubin, G. M. Cell types and neuronal circuitry underlying female aggression in Drosophila. eLife. 2020; 9: elife.58942. DOI: 10.7554/eLife.58942 View lines
For split-GAL4 lines targeting downstream neurons of Moonwalker Descending Neuron (MDN) (MDN Downstream 2020):
Feng, K., Sen, R., Minegishi, R., Dübbert, M., Bockemühl, T., Büschges, A. & Dickson, B. J. Distributed control of motor circuits for backward walking in Drosophila. Nat Commun. 2020; 11: s41467-020-19936-x. DOI: 10.1038/s41467-020-19936-x View lines
For split-GAL4 lines used in the evaluation of the JRC2018 templates (Bogovic 2021):
Bogovic, J. A., Otsuna, H., Heinrich, L., Ito, M., Jeter, J., Meissner, G., Nern, A., Colonell, J., Malkesman, O., Ito, K. & Saalfeld, S. An unbiased template of the Drosophila brain and ventral nerve cord. PLoS ONE. 2020; 15: e0236495. DOI: 10.1371/journal.pone.0236495 View lines
For split-GAL4 lines used in the evaluation of PatchPerPixMatch (Mais 2021):
Mais, L., Hirsch, P., Managan, C., Wang, K., Rokicki, K., Svirskas, R. R., Dickson, B. J., Korff, W., Rubin, G. M., Ihrke, G., Meissner, G. W., Kainmueller, D. PatchPerPixMatch for Automated 3d Search of Neuronal Morphologies in Light Microscopy. bioRxiv. 2021: 07.23.453511. DOI: 10.1101/2021.07.23.453511 View lines
A split-GAL4 collection that provides precise genetic targeting of 138 neuronal cell types in the subesophageal zone of adult Drosophila melanogaster. (SEZ 2021):
Sterne, G. R., Otsuna, H., Dickson, B. J. & Scott, K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife. 2021; 10: elife.71679. DOI: 10.7554/eLife.71679 View lines
For split-GAL4 lines for descending neurons for flight control (Namiki 2021):
Namiki, S., Ros, I. G., Morrow, C., Rowell, W. J., Card, G. M., Korff, W. & Dickinson, M. H. A population of descending neurons that regulates the flight motor of Drosophila. Current Biology. 2022: j.cub.2022.01.008. DOI: 10.1016/j.cub.2022.01.008 View lines
For split-GAL4 lines used for the characterization of R7 and R8 photoreceptor targets (R7R8 targets 2021):
Kind, E., Longden, K. D., Nern, A., Zhao, A., Sancer, G., Flynn, M. A., Laughland, C. W., Gezahegn, B., Ludwig, H. D., Thomson, A. G., Obrusnik, T., Alarcón, P. G., Dionne, H., Bock, D. D., Rubin, G. M., Reiser, M. B. & Wernet, M. F. Synaptic targets of photoreceptors specialized to detect color and skylight polarization in Drosophila. eLife. 2021; 10: elife.71858. DOI: 10.7554/eLife.71858 View lines
For a split-GAL4 line associated with the central complex connectome (Hulse et al. 2021):
Hulse, B. K., Haberkern, H., Franconville, R., Turner-Evans, D. B., Takemura, S., Wolff, T., Noorman, M., Dreher, M., Dan, C., Parekh, R., Hermundstad, A. M., Rubin, G. M. & Jayaraman, V. A connectome of the Drosophila central complex reveals network motifs suitable for flexible navigation and context-dependent action selection. eLife. 2021; 10: elife.66039. DOI: 10.7554/eLife.66039 View lines
For the neural circuits centered on the antennal lobes and the mushroom bodies (Aso 2021):
Shuai, Y., Sammons, M., Sterne, G., Hibbard, K., Yang, H., Yang, C., Managan, C., Siwanowicz, I., Lee, T., Rubin, G. M., Turner, G. & Aso, Y. Driver lines for studying associative learning in Drosophila. bioRxiv. 2023: 2023.09.15.557808. DOI: 10.1101/2023.09.15.557808 View lines
For the L1 split-GAL4 driver used in the characterization of synergy between color and motion vision (Longden_et_al_2021):
Longden, K. D., Rogers, E. M., Nern, A., Dionne, H. & Reiser, M. B. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat Commun. 2023; 14: s41467-023-43566-8. DOI: 10.1038/s41467-023-43566-8 View lines
For new split-GAL4 lines used for the characterization of a functionally ordered visual feature map in the fly brain (Klapoetke_et_al_2021):
Klapoetke, N. C., Nern, A., Rogers, E. M., Rubin, G. M., Reiser, M. B. & Card, G. M. A functionally ordered visual feature map in the Drosophila brain. Neuron. 2022: j.neuron.2022.02.013. DOI: 10.1016/j.neuron.2022.02.013 View lines
For split-GAL4 lines used to characterize neural network organization for courtship-song feature detection (Baker et al 2022):
Baker, C. A., McKellar, C., Pang, R., Nern, A., Dorkenwald, S., Pacheco, D. A., Eckstein, N., Funke, J., Dickson, B. J. & Murthy, M. Neural network organization for courtship-song feature detection in Drosophila. Current Biology. 2022; 32: 3317-3333.e7. DOI: 10.1016/j.cub.2022.06.019 View lines
Organization of an Ascending Circuit that Conveys Flight Motor State (Cheong, Boone, Bennett 2023):
Cheong, H. S., Boone, K. N., Bennett, M. M., Salman, F., Ralston, J. D., Hatch, K., Allen, R. F., Phelps, A. M., Cook, A. P., Phelps, J. S., Erginkaya, M., Lee, W. A., Card, G. M., Daly, K. C. & Dacks, A. M. Organization of an ascending circuit that conveys flight motor state in Drosophila. Current Biology. 2024: j.cub.2024.01.071. DOI: 10.1016/j.cub.2024.01.071 View lines
Organization of premotor circuits in the Male Adult Nerve Cord connectome (Cheong, Eichler, Stuerner 2023):
Cheong, H. S. J., Eichler, K., Stuerner, T., Asinof, S. K., Champion, A. S., Marin, E. C., Oram, T. B., Sumathipala, M., Venkatasubramanian, L., Namiki, S., Siwanowicz, I., Costa, M., Berg, S., Jefferis, G. S. X. E., Card, G. M. & Janelia FlyEM Project Team. Transforming descending input into behavior: The organization of premotor circuits in theDrosophilaMale Adult Nerve Cord connectome. bioRxiv. 2023: 2023.06.07.543976. DOI: 10.1101/2023.06.07.543976 View lines
Split-GAL4 lines for premotor and related neurons in the dorsal VNC (Dorsal VNC 2023):
Ehrhardt, E., Whitehead, S. C., Namiki, S., Minegishi, R., Siwanowicz, I., Feng, K., Otsuna, H., Meissner, G. W., Stern, D., Truman, J., Shepherd, D., Dickinson, M. H., Ito, K., Dickson, B. J., Cohen, I., Card, G. M., Korff, W. & FlyLight Project Team. Single-cell type analysis of wing premotor circuits in the ventral nerve cord ofDrosophila melanogaster. bioRxiv. 2023: 2023.05.31.542897. DOI: 10.1101/2023.05.31.542897 View lines
Split-GAL4 lines for mushroom body output neurons (MBONs), including atypical MBONs (Rubin & Aso 2023):
Rubin, G. M. & Aso, Y. New genetic tools for mushroom body output neurons in Drosophila. eLife. 2023; 12: elife.90523. DOI: 10.7554/eLife.90523 View lines
For Ascending Neuron split-GAL4 lines (Ascending Neurons 2023):
Minegishi, R., Dickson, B. J. & FlyLight Project Team. Ascending Neurons 2023 split-GAL4 lines. Janelia Research Campus, 2023. DOI: 10.25378/janelia.23726103 View lines
For split-GAL4 lines labeling neurons regulating the decision to lay eggs (oviDN 2023):
Vijayan, V., Wang, F., Wang, K., Chakravorty, A., Adachi, A., Akhlaghpour, H., Dickson, B. J. & Maimon, G. A rise-to-threshold process for a relative-value decision. Nature. 2023; 619: 563-571. DOI: 10.1038/s41586-023-06271-6 View lines
For new split-GAL4 lines used in the discovery of brain wiring determinants by integrating connectomes and transcriptomes (Yoo et al 2023):
Yoo, J., Dombrovski, M., Mirshahidi, P., Nern, A., LoCascio, S. A., Zipursky, S. L. & Kurmangaliyev, Y. Z. Brain wiring determinants uncovered by integrating connectomes and transcriptomes. Current Biology. 2023: j.cub.2023.08.020. DOI: 10.1016/j.cub.2023.08.020 View lines
For new split-GAL4 lines used in the characterization of small-field visual projection neurons that detect translational optic flow (Isaacson et al 2023):
Isaacson, M. D., Eliason, J. L. M., Nern, A., Rogers, E. M., Lott, G. K., Tabachnik, T., Rowell, W. J., Edwards, A. W., Korff, W. L., Rubin, G. M., Branson, K. & Reiser, M. B. Small-field visual projection neurons detect translational optic flow and support walking control. bioRxiv. 2023: 2023.06.21.546024. DOI: 10.1101/2023.06.21.546024 View lines
Split-GAL4 line for pC2l courtship neurons, related to split-LexA used in Fig 6E-F (Lillvis 2022):
Lillvis, J. L., Otsuna, H., Ding, X., Pisarev, I., Kawase, T., Colonell, J., Rokicki, K., Goina, C., Gao, R., Hu, A., Wang, K., Bogovic, J., Milkie, D. E., Meienberg, L., Mensh, B. D., Boyden, E. S., Saalfeld, S., Tillberg, P. W. & Dickson, B. J. Rapid reconstruction of neural circuits using tissue expansion and light sheet microscopy. eLife. 2022; 11: elife.81248. DOI: 10.7554/eLife.81248 View lines
Split-GAL4 lines for courtship song circuit neurons and other neurons innervating the VNC wing neuropil (Lillvis 2023):
Lillvis, J. L., Wang, K., Shiozaki, H. M., Xu, M., Stern, D. L. & Dickson, B. J. Nested neural circuits generate distinct acoustic signals during Drosophila courtship. Current Biology. 2024: j.cub.2024.01.015. DOI: 10.1016/j.cub.2024.01.015 View lines
For additional cell-type-specific split-GAL4 lines across the CNS (Split-GAL4 Omnibus Rescreen):
Meissner, G. W., Vannan, A., Jeter, J., Atkins, M., Bowers, S., Close, K., DePasquale, G. M., Dorman, Z., Forster, K., Beringer, J. A., Gibney, T. V., Gulati, A., Hausenfluck, J. H., He, Y., Henderson, K., Johnson, L., Johnston, R. M., Ihrke, G., Iyer, N., Lazarus, R., Lee, K., Li, H., Liaw, H., Melton, B., Miller, S., Motaher, R., Novak, A., Ogundeyi, O., Petruncio, A., Price, J., Protopapas, S., Tae, S., Tata, A., Taylor, J., Vorimo, R., Yarbrough, B., Zeng, K. X., Zugates, C. T., Dionne, H., Angstadt, C., Ashley, K., Cavallaro, A., Dang, T., Gonzalez, G. A., Hibbard, K. L., Huang, C., Kao, J., Laverty, T., Mercer, M., Perez, B., Pitts, S., Ruiz, D., Vallanadu, V., Zheng, G. Z., Goina, C., Otsuna, H., Rokicki, K., Svirskas, R. R., Cheong, H. S., Dolan, M., Ehrhardt, E., Feng, K., Galfi, B. E., Goldammer, J., Hu, N., Ito, M., McKellar, C., Minegishi, R., Namiki, S., Nern, A., Schretter, C. E., Sterne, G. R., Venkatasubramanian, L., Wang, K., Wolff, T., Wu, M., George, R., Malkesman, O., Aso, Y., Card, G. M., Dickson, B. J., Korff, W., Ito, K., Truman, J. W., Zlatic, M., Rubin, G. M. & FlyLight Project Team. A split-GAL4 driver line resource for Drosophila CNS cell types. bioRxiv. 2024: 2024.01.09.574419. DOI: 10.1101/2024.01.09.574419 View lines
Split-GAL4 lines for neurons that gate visual information during social behaviors (Schretter et al 2024):
Schretter, C. E., Hindmarsh Sten, T., Klapoetke, N., Shao, M., Nern, A., Dreher, M., Bushey, D., Robie, A. A., Taylor, A. L., Branson, K. M., Otopalik, A., Ruta, V. & Rubin, G. M. Social state gates vision using three circuit mechanisms in Drosophila. bioRxiv. 2024: 2024.03.15.585289. DOI: 10.1101/2024.03.15.585289 View lines
Motor neurons generate pose-targeted movements via proprioceptive sculpting (Gorko et al 2024):
Gorko, B., Siwanowicz, I., Close, K., Christoforou, C., Hibbard, K. L., Kabra, M., Lee, A., Park, J., Li, S. Y., Chen, A. B., Namiki, S., Chen, C., Tuthill, J. C., Bock, D. D., Rouault, H., Branson, K., Ihrke, G. & Huston, S. J. Motor neurons generate pose-targeted movements via proprioceptive sculpting. Nature. 2024: s41586-024-07222-5. DOI: 10.1038/s41586-024-07222-5 View lines
For new split-GAL4 lines for visual system neurons (Nern et al 2024):
Nern, A., Loesche, F., Takemura, S., Burnett, L. E., Dreher, M., Gruntman, E., Hoeller, J., Huang, G. B., Januszewski, M., Klapoetke, N. C., Koskela, S., Longden, K. D., Lu, Z., Preibisch, S., Qiu, W., Rogers, E. M., Seenivasan, P., Zhao, A., Bogovic, J., Canino, B. S., Clements, J., Cook, M., Finley-May, S., Flynn, M. A., Fragniere, A. M., Hameed, I., Hayworth, K. J., Hopkins, G. P., Hubbard, P. M., Katz, W. T., Kovalyak, J., Lauchie, S. A., Leonard, M., Lohff, A., Maldonado, C. A., Mooney, C., Okeoma, N., Olbris, D. J., Ordish, C., Paterson, T., Phillips, E. M., Pietzsch, T., Rivas Salinas, J., Rivlin, P. K., Schlegel, P., Scott, A. L., Scuderi, L. A., Takemura, S., Talebi, I., Thomson, A., Trautman, E. T., Umayam, L., Walsh, C., Walsh, J. J., Xu, C. S., Yakal, E. A., Yang, T., Zhao, T., Funke, J., George, R., Hess, H. F., Jefferis, G. S. X. E., Knecht, C., Korff, W., Plaza, S. M., Romani, S., Saalfeld, S., Scheffer, L. K., Berg, S., Rubin, G. M. & Reiser, M. B. Connectome-driven neural inventory of a complete visual system. bioRxiv. 2024: 2024.04.16.589741.DOI: 10.1101/2024.04.16.589741 View lines
For refinement of the split-GAL4 vectors and methodology:
Pfeiffer, B. D., Ngo, T. B., Hibbard, K. L., Murphy, C., Jenett, A., Truman, J. W., & Rubin, G. M. Refinement of Tools for Targeted Gene Expression in Drosophila. Genetics. 2010; 186: 735-755. DOI: 10.1534/genetics.110.119917
For Multicolor Flip-out (MCFO) technique and single cell labeling:
Nern, A., Pfeiffer, B. D., & Rubin, G. M. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci USA. 2015; 112: E2967-E2976. DOI: 10.1073/pnas.1506763112
Split-GAL4 lines were designed based on the expression patterns of GAL4 driver lines in the adult nervous system:
The Janelia collection of lines is described in Jenett, A., Rubin, G. M., Ngo, T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B. D., Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J. H., Peng, H., Trautman, E. T., Svirskas, R. R., Myers, E. W., Iwinski, Z. R., Aso, Y., DePasquale, G. M., Enos, A., Hulamm, P., Lam, S. C. B., Li, H., Laverty, T. R., Long, F., Qu, L., Murphy, S. D., Rokicki, K., Safford, T., Shaw, K., Simpson, J. H., Sowell, A., Tae, S., Yu, Y., & Zugates, C. T. A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Reports. 2012; 2: 991-1001. DOI: 10.1016/j.celrep.2012.09.011
For the construction of the split-GAL4 hemidriver collection based on Jenett, et al., 2012:
Dionne, H., Hibbard, K. L., Cavallaro, A., Kao, J. & Rubin, G. M. Genetic Reagents for Making Split-GAL4 Lines in Drosophila. Genetics. 2018; 209: 31-35. DOI: 10.1534/genetics.118.300682
The VT collection of lines is described in:
- Kvon, E. Z., Kazmar, T., Stampfel, G., Yáñez-Cuna, J. O., Pagani, M., Schernhuber, K., Dickson, B. J., & Stark, A. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature. 2014; 512: 91-95. (DOI: 10.1038/nature13395)
- Tirian, L. & Dickson, B. J. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. bioRxiv. 2017: 198648. DOI: 10.1101/198648