Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Labs:
Project Teams:
Main Menu - Block
Labs:
Project Teams:
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
janelia7_blocks-janelia7_biblio_header | block
Tetrahedron Letters. 1998 Oct 8;39:7451-54
An acid- and base-stable o-nitrobenzyl photolabile linker for solid phase organic synthesis. Sternson Lab

Sternson SM, Schreiber SL
Note: Research in this publication was not performed at Janelia.
janelia7_blocks-janelia7_biblio_abstract | block
Abstract
The synthesis of an o-nitrobenzyl photolabile linker (1) from o-nitrobenzaldehyde is described, and the efficiency of its light-mediated (365 nm) cleavage is found to be comparable to related, previously developed systems. In contrast, 1 is shown to be stable to acid, base, and Lewis acid/amine combinations while the previously developed linker 2 is shown to degrade under the latter two conditions.
node:body | entity_field
janelia7_blocks-janelia7_biblio_tools | block