Main Menu (Mobile)- Block
- Overview
 - 
                        Support Teams                           
- Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
 - Open Science
 - You + Janelia
 - About Us
 
Labs:
            Project Teams:
            Main Menu - Block
Labs:
            Project Teams:
            - Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
janelia7_blocks-janelia7_biblio_header | block
ACS Chemical Biology. 2014 Mar 20;9(4):855-66. doi: 10.1021/cb500078u
          Bright building blocks for chemical biology.              Lavis Lab            
                    
            Lavis LD, Raines RT          
        janelia7_blocks-janelia7_biblio_abstract | block
Abstract
Small-molecule fluorophores manifest the ability of chemistry to solve problems in biology. As we noted in a previous review (Lavis, L. D.; Raines, R. T. ACS Chem. Biol. 2008, 3, 142-155), the extant collection of fluorescent probes is built on a modest set of "core" scaffolds that evolved during a century of academic and industrial research. Here, we survey traditional and modern synthetic routes to small-molecule fluorophores and highlight recent biological insights attained with customized fluorescent probes. Our intent is to inspire the design and creation of new high-precision tools that empower chemical biologists.
PMID: 24579725 [PubMed - indexed for MEDLINE]
node:body | entity_field
janelia7_blocks-janelia7_biblio_authors | block
Janelia Authors
janelia7_blocks-janelia7_biblio_tools | block


