Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Cancer cells adapt to nutrient stress by remodeling the repertoire of proteins on their surface, enabling survival and progression under starvation conditions. However, the molecular mechanisms by which nutrient cues reshape the cell surface proteome to influence cell behavior remain largely unresolved. Here, we show that acute glucose starvation, but not amino acid deprivation or mTOR inhibition, selectively impairs ER-to-Golgi export of specific cargoes, such as E-cadherin, in a SEC24C-dependent manner. Quantitative cell surface proteomics reveal that glucose deprivation remodels the cell surface proteome, notably reducing surface expression of key adhesion molecules. This nutrient-sensitive reprogramming enhances cell migration in vitro and promotes metastasis in vivo. Mechanistically, we show that AMPK and ULK1 signaling orchestrate this process independent of autophagy, with ULK1-mediated phosphorylation of SEC31A driving SEC24C-dependent COPII reorganization. These findings establish ER-to-Golgi trafficking as a nutrient-sensitive regulatory node that links metabolic stress to cell surface remodeling and metastatic potential.


