Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
The mammalian cerebral cortex is composed of neurons whose properties vary in a continuous fashion rather than falling into discrete cell types. In the mouse visual cortex, excitatory neurons in layer 2 and 3 (L2/3) form such a continuum along cortical depth, patterned by the graded expression of hundreds of genes. Here we sought to understand how this continuum develops and contributes to cortical wiring. Using single-nucleus multiomics (RNA- and ATAC-Seq) and spatial transcriptomics, we show that the L2/3 continuum is established in two phases. During the first postnatal week, a genetically hardwired program establishes a primitive continuum of cell identities spanning the depth of L2/3. The second program, promoted by visual experience, is later superimposed upon the preexisting continuum. This second phase is driven by activity-regulated transcription factors that drive the L2/3 depth-dependent expression of genes linked to synaptic function and plasticity. We show that neurons at different positions along the L2/3 continuum project preferentially to distinct higher visual areas and that visual deprivation disrupts targeting to some higher visual areas while sparing others. Thus, cortical continua emerge through a stepwise process in which genetic programs and sensory experience specify neuronal identity and sculpt intracortical wiring specificity.

