Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Animals learn trajectories to rewards in both spatial, navigational contexts and relational, non-navigational contexts. Synchronous reactivation of hippocampal activity is thought to be critical for recall and evaluation of trajectories for learning. Do hippocampal representations differentially contribute to experience-dependent learning of trajectories across spatial and relational contexts? In this study, we trained mice to navigate to a hidden target in a physical arena or manipulate a joystick to a virtual target to collect delayed rewards. In a navigational context, calcium imaging in freely moving mice revealed that synchronous CA1 reactivation was retrospective and important for evaluation of prior navigational trajectories. In a non-navigational context, reactivation was prospective and important for initiation of joystick trajectories, even in the same animals trained in both contexts. Adaptation of trajectories to a new target was well-explained by a common learning algorithm in which hippocampal activity makes dissociable contributions to reinforcement learning computations depending upon spatial context.