Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
![](/sites/all/themes/janelia7/images/peopleHeadIcon.png)
Abstract
Theoretical calculations suggest that crystals exceeding 100 nm thickness are excluded by dynamical scattering from successful structure determination using microcrystal electron diffraction (MicroED). These calculations are at odds with experimental results where MicroED structures have been determined from significantly thicker crystals. Here we systematically evaluate the influence of thickness on the accuracy of MicroED intensities and the ability to determine structures from protein crystals one micrometer thick. To do so, we compare ab initio structures of a human prion protein segment determined from thin crystals to those determined from crystals up to one micrometer thick. We also compare molecular replacement solutions from crystals of varying thickness for a larger globular protein, proteinase K. Our results indicate that structures can be reliably determined from crystals at least an order of magnitude thicker than previously suggested by simulation, opening the possibility for an even broader range of MicroED experiments.