Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
Messenger RNA (mRNA) transfection enables rapid, transient protein expression without nuclear entry, providing a powerful alternative to DNA or viral delivery in post-mitotic and otherwise difficult-to-transfect cells. Although in vitro transcribed (IVT) mRNAs have revolutionized therapeutic applications, their adoption in experimental biology remains limited by challenges in synthesis, variability across cell types, and concerns about cytotoxicity. Here, we define design principles that maximize IVT mRNA performance across diverse cellular and organismal systems. Through systematic comparison of capping strategies and base modifications, including N1-methyl-pseudouridine, 5-methylcytidine, and 5-methoxyuridine, we identify modifications that enhance translation while minimizing activation of cellular stress responses. Optimized transcripts drive robust protein expression within four hours, persist for up to one week, and support multiplexed expression of structurally and functionally distinct proteins in mammalian cells, including cancer cell lines, iPSC-derived systems, primary cells, and organoids, as well as in vivo in zebrafish embryos and in less genetically tractable models such as Danionella cerebrum and sea urchin embryos. To further expand accessibility for community use, we developed mRNAbow, a platform for generating low-toxicity mRNAs encoding organelle-targeted fluorescent proteins and biosensors for multiplex imaging, with corresponding plasmids made publicly available. Together, these advances establish a generalizable framework for IVT mRNA design and expand experimental access to synthetic mRNA technologies for dissecting cellular architecture and dynamics.
bioRxiv preprint: https://www.biorxiv.org/content/early/2026/01/02/2026.01.02.697412









