Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
The structure and interaction networks of molecules within biomolecular condensates are poorly understood. Using cryo-electron tomography and molecular dynamics simulations, we elucidated the structure of phase-separated chromatin condensates across scales, from individual amino acids to network architecture. We found that internucleosomal DNA linker length controls nucleosome arrangement and histone tail interactions, shaping the structure of individual chromatin molecules within and outside condensates. This structural modulation determines the balance between intra- and intermolecular interactions, which governs the molecular network, thermodynamic stability, and material properties of chromatin condensates. Mammalian nuclei contain dense clusters of nucleosomes whose nonrandom organization is mirrored by the reconstituted condensates. Our work explains how the structure of individual chromatin molecules determines physical properties of chromatin condensates and cellular chromatin organization.




