Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Stem Cell & Primary Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Stem Cell & Primary Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
The brain’s capabilities rely on both the molecular properties of individual cells and their interactions across brain-wide networks. However, relating gene expression to activity in individual neurons across the entire brain remains elusive. Here we developed an experimental-computational platform, WARP, for whole-brain imaging of neuronal activity during behavior, expansion-assisted spatial transcriptomics, and cellular-level registration of these two modalities. Through joint analysis of whole-brain neuronal activity during multiple behaviors, cellular gene expression, and anatomy, we identified functions of molecularly defined populations — including luminance coding in a cckb-pou4f2 midbrain population and task-structured activity in pvalb7-eomesa hippocampal-like neurons — and defined over 2,000 other function-gene-anatomy subpopulations. Analysis of this unprecedented multimodal dataset also revealed that most gene-matched neurons showed stronger activity correlations, highlighting a brain-wide role for gene expression in functional organization. WARP establishes a foundational platform and open-access dataset for cross-experiment discovery, high-throughput function-to-gene mapping, unification of cell biology and systems neuroscience, and scalable circuit modeling at the whole-brain scale.
bioRxov preprint: https://www.biorxiv.org/content/early/2026/02/10/2026.02.07.704095
