Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2721 Janelia Publications

Showing 1821-1830 of 2721 results
04/09/18 | Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila.
Bentzur A, Shmueli A, Omesi L, Ryvkin J, Knapp J, Parnas M, Davis FP, Shohat-Ophir G
PLoS Genetics. 2018 Apr 09;14(4):e1007328. doi: 10.1371/journal.pgen.1007328

Living in a social environment requires the ability to respond to specific social stimuli and to incorporate information obtained from prior interactions into future ones. One of the mechanisms that facilitates social interaction is pheromone-based communication. In Drosophila melanogaster, the male-specific pheromone cis-vaccenyl acetate (cVA) elicits different responses in male and female flies, and functions to modulate behavior in a context and experience-dependent manner. Although it is the most studied pheromone in flies, the mechanisms that determine the complexity of the response, its intensity and final output with respect to social context, sex and prior interaction, are still not well understood. Here we explored the functional link between social interaction and pheromone-based communication and discovered an odorant binding protein that links social interaction to sex specific changes in cVA related responses. Odorant binding protein 69a (Obp69a) is expressed in auxiliary cells and secreted into the olfactory sensilla. Its expression is inversely regulated in male and female flies by social interactions: cVA exposure reduces its levels in male flies and increases its levels in female flies. Increasing or decreasing Obp69a levels by genetic means establishes a functional link between Obp69a levels and the extent of male aggression and female receptivity. We show that activation of cVA-sensing neurons is sufficeint to regulate Obp69a levels in the absence of cVA, and requires active neurotransmission between the sensory neuron to the second order olfactory neuron. The cross-talk between sensory neurons and non-neuronal auxiliary cells at the olfactory sensilla, represents an additional component in the machinery that promotes behavioral plasticity to the same sensory stimuli in male and female flies.

View Publication Page
05/20/18 | Of what use is connectomics? A personal perspective on the connectome.
Meinertzhagen IA
The Journal of Experimental Biology. 2018 May 20;221(Pt 10):. doi: 10.1242/jeb.164954

The brain is a network of neurons and its biological output is behaviour. This is an exciting age, with a growing acknowledgement that the comprehensive compilation of synaptic circuits densely reconstructed in the brains of model species is now both technologically feasible and a scientifically enabling possibility in neurobiology, much as 30 years ago genomics was in molecular biology and genetics. Implemented by huge advances in electron microscope technology, especially focused ion beam-scanning electron microscope (FIB-SEM) milling (see Glossary), image capture and alignment, and computer-aided reconstruction of neuron morphologies, enormous progress has been made in the last decade in the detailed knowledge of the actual synaptic circuits formed by real neurons, in various brain regions of the fly It is useful to distinguish synaptic pathways that are major, with 100 or more presynaptic contacts, from those that are minor, with fewer than about 10; most neurites are both presynaptic and postsynaptic, and all synaptic sites have multiple postsynaptic dendrites. Work on has spearheaded these advances because cell numbers are manageable, and neuron classes are morphologically discrete and genetically identifiable, many confirmed by reporters. Recent advances are destined within the next few years to reveal the complete connectome in an adult fly, paralleling advances in the larval brain that offer the same prospect possibly within an even shorter time frame. The final amendment and validation of segmented bodies by human proof-readers remains the most time-consuming step, however. The value of a complete connectome in is that, by targeting to specific neurons transgenes that either silence or activate morphologically identified circuits, and then identifying the resulting behavioural outcome, we can determine the causal mechanism for behaviour from its loss or gain. More importantly, the connectome reveals hitherto unsuspected pathways, leading us to seek novel behaviours for these. Circuit information will eventually be required to understand how differences between brains underlie differences in behaviour, and especially to herald yet more advanced connectomic strategies for the vertebrate brain, with an eventual prospect of understanding cognitive disorders having a connectomic basis. Connectomes also help us to identify common synaptic circuits in different species and thus to reveal an evolutionary progression in candidate pathways.

View Publication Page
12/01/07 | Olfactory coding with all-or-nothing glomeruli.
Koulakov A, Gelperin A, Rinberg D
Journal of Neurophysiology. 2007 Dec;98(6):3134-42. doi: 10.1523/JNEUROSCI.3613-08.2008

We present a model for olfactory coding based on spatial representation of glomerular responses. In this model distinct odorants activate specific subsets of glomeruli, dependent on the odorant’s chemical identity and concentration. The glomerular response specificities are understood statistically, based on experimentally measured distributions of activation thresholds. A simple version of the model, in which glomerular responses are binary (the all-or-nothing model), allows us to account quantitatively for the following results of human/rodent olfactory psychophysics: 1) just noticeable differences in the perceived concentration of a single odor (Weber ratios) are as low as dC/C approximately 0.04; 2) the number of simultaneously perceived odors can be as high as 12; and 3) extensive lesions of the olfactory bulb do not lead to significant changes in detection or discrimination thresholds. We conclude that a combinatorial code based on a binary glomerular response is sufficient to account for several important features of the discrimination capacity of the mammalian olfactory system.

View Publication Page
08/15/24 | Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking
Suguru Takagi , Liliane Abuin , S. David Stupski , J. Roman Arguello , Lucia Prieto-Godino , David L. Stern , Steeve Cruchet , Raquel Álvarez-Ocaña , Carl F. R. Wienecke , Floris van Breugel , Thomas O. Auer , Richard Benton
Nat Commun. 2024 Aug 15;15(1):7041. doi: 10.1038/s41467-024-50808-w

The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.

View Publication Page
11/29/22 | Oligodendrocyte precursor cells ingest axons in the mouse neocortex.
Buchanan J, Elabbady L, Collman F, Jorstad NL, Bakken TE, Ott C, Glatzer J, Bleckert AA, Bodor AL, Brittain D, Bumbarger DJ, Mahalingam G, Seshamani S, Schneider-Mizell C, Takeno MM, Torres R, Yin W, Hodge RD, Castro M, Dorkenwald S, Ih D, Jordan CS, Kemnitz N, Lee K, Lu R, Macrina T, Mu S, Popovych S, Silversmith WM, Tartavull I, Turner NL, Wilson AM, Wong W, Wu J, Zlateski A, Zung J, Lippincott-Schwartz J, Lein ES, Seung HS, Bergles DE, Reid RC, da Costa NM
Proceedings of the National Academies of Science of the U.S.A.. 2022 Nov 29;119(48):e2202580119. doi: 10.1073/pnas.2202580119

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process. Here, we used large-scale, serial section transmission electron microscopy (TEM) with computational volume segmentation to reconstruct the complete 3D morphologies of distinct glial types in the mouse visual cortex, providing unprecedented resolution of their morphology and composition. Unexpectedly, we discovered that the fine processes of oligodendrocyte precursor cells (OPCs), a population of abundant, highly dynamic glial progenitors, frequently surrounded small branches of axons. Numerous phagosomes and phagolysosomes (PLs) containing fragments of axons and vesicular structures were present inside their processes, suggesting that OPCs engage in axon pruning. Single-nucleus RNA sequencing from the developing mouse cortex revealed that OPCs express key phagocytic genes at this stage, as well as neuronal transcripts, consistent with active axon engulfment. Although microglia are thought to be responsible for the majority of synaptic pruning and structural refinement, PLs were ten times more abundant in OPCs than in microglia at this stage, and these structures were markedly less abundant in newly generated oligodendrocytes, suggesting that OPCs contribute substantially to the refinement of neuronal circuits during cortical development.

View Publication Page
09/01/23 | OME-Zarr: a cloud-optimized bioimaging file format with international community support.
Josh Moore , Daniela Basurto-Lozada , Sébastien Besson , John Bogovic , Eva M. Brown , Jean-Marie Burel , Gustavo de Medeiros , Erin E. Diel , David Gault , Satrajit S. Ghosh , Ilan Gold , Yaroslav O. Halchenko , Matthew Hartley , Dave Horsfall , Mark S. Keller , Mark Kittisopikul , Gabor Kovacs , Aybüke Küpcü Yoldaş , Albane le Tournoulx de la Villegeorges , Tong Li , Prisca Liberali , Melissa Linkert , Dominik Lindner , Joel Lüthi , Jeremy Maitin-Shepard , Trevor Manz , Matthew McCormick , Khaled Mohamed , William Moore , Bugra Özdemir , Constantin Pape , Lucas Pelkmans , Martin Prete , Tobias Pietzsch , Stephan Preibisch , Norman Rzepka , David R. Stirling , Jonathan Striebel , Christian Tischer , Daniel Toloudis , Petr Walczysko , Alan M. Watson , Frances Wong , Kevin A. Yamauchi , Omer Bayraktar , Muzlifah Haniffa , Stephan Saalfeld , Jason R. Swedlow
Histochemistry and Cell Biology. 2023 Feb 25;160(3):223-251. doi: 10.1007/s00418-023-02209-1

A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the format itself – OME-Zarr – along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain — the file format that underlies so many personal, institutional, and global data management and analysis tasks.

View Publication Page
07/27/22 | Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation
Kevin J. Cutler , Carsen Stringer , Paul A. Wiggins , Joseph D. Mougous
bioRxiv. 2022 Jul 27:. doi: 10.1101/2021.11.03.467199

Advances in microscopy hold great promise for allowing quantitative and precise readouts of morphological and molecular phenomena at the single cell level in bacteria. However, the potential of this approach is ultimately limited by the availability of methods to perform unbiased cell segmentation, defined as the ability to faithfully identify cells independent of their morphology or optical characteristics. In this study, we present a new algorithm, Omnipose, which accurately segments samples that present significant challenges to current algorithms, including mixed bacterial cultures, antibiotic-treated cells, and cells of extended or branched morphology. We show that Omnipose achieves generality and performance beyond leading algorithms and its predecessor, Cellpose, by virtue of unique neural network outputs such as the gradient of the distance field. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism and on the segmentation of non-bacterial objects. Our results distinguish Omnipose as a uniquely powerful tool for answering diverse questions in bacterial cell biology.

View Publication Page
10/17/22 | Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation.
Cutler KJ, Stringer C, Lo TW, Rappez L, Stroustrup N, Brook Peterson S, Wiggins PA, Mougous JD
Nature Methods. 2022 Oct 17:. doi: 10.1038/s41592-022-01639-4

Advances in microscopy hold great promise for allowing quantitative and precise measurement of morphological and molecular phenomena at the single-cell level in bacteria; however, the potential of this approach is ultimately limited by the availability of methods to faithfully segment cells independent of their morphological or optical characteristics. Here, we present Omnipose, a deep neural network image-segmentation algorithm. Unique network outputs such as the gradient of the distance field allow Omnipose to accurately segment cells on which current algorithms, including its predecessor, Cellpose, produce errors. We show that Omnipose achieves unprecedented segmentation performance on mixed bacterial cultures, antibiotic-treated cells and cells of elongated or branched morphology. Furthermore, the benefits of Omnipose extend to non-bacterial subjects, varied imaging modalities and three-dimensional objects. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism. Our results distinguish Omnipose as a powerful tool for characterizing diverse and arbitrarily shaped cell types from imaging data.

View Publication Page
05/26/22 | One engram two readouts: stimulus dynamics switch a learned behavior in Drosophila
Mehrab N Modi , Adithya Rajagopalan , Hervé Rouault , Yoshinori Aso , Glenn C Turner
bioRxiv. 2022 May 26:. doi: 10.1101/2022.05.24.492551

Memory guides the choices an animal makes across widely varying conditions in dynamic environments. Consequently, the most adaptive choice depends on the options available. How can a single memory support optimal behavior across different sets of choice options? We address this using olfactory learning in Drosophila. Even when we restrict an odor-punishment association to a single set of synapses using optogenetics, we find that flies still show choice behavior that depends on the options it encounters. Here we show that how the odor choices are presented to the animal influences memory recall itself. Presenting two similar odors in sequence enabled flies to not only discriminate them behaviorally but also at the level of neural activity. However, when the same odors were encountered as solitary stimuli, no such differences were detectable. These results show that memory recall is not simply a comparison to a static learned template, but can be adaptively modulated by stimulus dynamics.

View Publication Page
11/11/24 | ONIX: a unified open-source platform for multimodal neural recording and perturbation during naturalistic behavior.
Newman JP, Zhang J, Cuevas-López A, Miller NJ, Honda T, van der Goes MH, Leighton AH, Carvalho F, Lopes G, Lakunina A, Siegle JH, Harnett MT, Wilson MA, Voigts J
Nat Methods. 2024 Nov 11:. doi: 10.1038/s41592-024-02521-1

Behavioral neuroscience faces two conflicting demands: long-duration recordings from large neural populations and unimpeded animal behavior. To meet this challenge we developed ONIX, an open-source data acquisition system with high data throughput (2 GB s) and low closed-loop latencies (<1 ms) that uses a 0.3-mm thin tether to minimize behavioral impact. Head position and rotation are tracked in three dimensions and used to drive active commutation without torque measurements. ONIX can acquire data from combinations of passive electrodes, Neuropixels probes, head-mounted microscopes, cameras, three-dimensional trackers and other data sources. We performed uninterrupted, long (~7 h) neural recordings in mice as they traversed complex three-dimensional terrain, and multiday sleep-tracking recordings (~55 h). ONIX enabled exploration with similar mobility as nonimplanted animals, in contrast to conventional tethered systems, which have restricted movement. By combining long recordings with full mobility, our technology will enable progress on questions that require high-quality neural recordings during ethologically grounded behaviors.

View Publication Page