Main Menu (Mobile)- Block
- Overview
 - 
                        Support Teams                           
- Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
 - Open Science
 - You + Janelia
 - About Us
 
Main Menu - Block
- Overview
 - Anatomy and Histology
 - Cryo-Electron Microscopy
 - Electron Microscopy
 - Flow Cytometry
 - Gene Targeting and Transgenics
 - High Performance Computing
 - Immortalized Cell Line Culture
 - Integrative Imaging
 - Invertebrate Shared Resource
 - Janelia Experimental Technology
 - Mass Spectrometry
 - Media Prep
 - Molecular Genomics
 - Primary & iPS Cell Culture
 - Project Pipeline Support
 - Project Technical Resources
 - Quantitative Genomics
 - Scientific Computing
 - Viral Tools
 - Vivarium
 
Abstract
AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing long-term potentiation (LTP) to increase synaptic transmission, but how AMPAR-containing vesicles are selectively trafficked to these synapses during LTP is not known. Here we developed a strategy to label AMPAR GluA1 subunits expressed from the endogenous loci of rat hippocampal neurons such that the motion of GluA1-containing vesicles in time-lapse sequences can be characterized using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of neuronal activity.
bioRxiv PrePrint https://doi.org/10.1101/2022.05.29.493906







