Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2529 Janelia Publications

Showing 2121-2130 of 2529 results
Grigorieff Lab
01/07/20 | Structure of the vesicular stomatitis virus L protein in complex with Its phosphoprotein cofactor.
Jenni S, Bloyet L, Diaz-Avalos R, Liang B, Whelan SP, Grigorieff N, Harrison SC
Cell Reports. 2020 Jan 07;30(1):53-60.e5. doi: 10.1016/j.celrep.2019.12.024

The large (L) proteins of non-segmented, negative-strand RNA viruses are multifunctional enzymes that produce capped, methylated, and polyadenylated mRNA and replicate the viral genome. A phosphoprotein (P), required for efficient RNA-dependent RNA polymerization from the viral ribonucleoprotein (RNP) template, regulates the function and conformation of the L protein. We report the structure of vesicular stomatitis virus L in complex with its P cofactor determined by electron cryomicroscopy at 3.0 Å resolution, enabling us to visualize bound segments of P. The contacts of three P segments with multiple L domains show how P induces a closed, compact, initiation-competent conformation. Binding of P to L positions its N-terminal domain adjacent to a putative RNA exit channel for efficient encapsidation of newly synthesized genomes with the nucleoprotein and orients its C-terminal domain to interact with an RNP template. The model shows that a conserved tryptophan in the priming loop can support the initiating 5' nucleotide.

View Publication Page
12/01/23 | Structure, interaction, and nervous connectivity of beta cell primary cilia
Andreas Müller , Nikolai Klena , Song Pang , Leticia Elizabeth Galicia Garcia , Davud Sulaymankhil , Oleksandra Topcheva , Monika Seliskar , Hassan Mziaut , Eyke Schöniger , Daniela Friedland , Nicole Kipke , Susanne Kretschmar , Carla Münster , Jürgen Weitz , Marius Distler , Thomas Kurth , Deborah Schmidt , Harald F. Hess , C. Shan Xu , Gaia Pigino , Michele Solimena
bioRxiv. 2023 Dec 01:. doi: 10.1101/2023.12.01.568979

Primary cilia are sensory organelles present in many cell types. Based on an array of microtubules termed axoneme they form a specialized membrane compartment partaking in various signaling processes. Primary cilia of pancreatic islet beta cells play a role in autocrine and paracrine signaling and are linked to diabetes. Yet, the structural basis for their functions is unclear. We present three-dimensional reconstructions of complete mouse and human beta cell cilia, revealing a disorganized 9+0 axoneme structure. Within the islet cilia are spatially confined within deep ciliary pockets or squeezed into narrow extracellular spaces between adjacent cells. Beta and alpha cell cilia physically interact with neighboring islet cells pushing and strongly bending their plasma membranes. Furthermore, beta cells can contain multiple cilia that can meet with other islet cell cilia in the extracellular space. Additionally, beta cell cilia establish connections with islet-projecting nerves. These findings highlight the pivotal role of beta cell primary cilia in islet cell connectivity, pointing at their potential functional role in integrating islet intrinsic and extrinsic signals. These novel insights contribute to understanding their significance in health and diabetes.

View Publication Page
Gonen Lab
11/20/17 | Structure-based inhibitors of tau aggregation.
Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS
Nature Chemistry. 2017 Nov 20:. doi: 10.1038/nchem.2889

Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

View Publication Page
Gonen Lab
02/01/18 | Structure-based inhibitors of tau aggregation.
Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS
Nature Chemistry. 2018 Feb;10(2):170-176. doi: 10.1038/nchem.2889

Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

View Publication Page
02/04/21 | Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System.
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P
Angew Chemie (International Edition English). 2021 Feb 04:. doi: 10.1002/anie.202015201

Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.

View Publication Page
01/01/23 | Structured cerebellar connectivity supports resilient pattern separation.
Nguyen TM, Thomas LA, Rhoades JL, Ricchi I, Yuan XC, Sheridan A, Hildebrand DG, Funke J, Regehr WG, Lee WA
Nature. 2023 Jan 01;613(7944):543-549. doi: 10.1038/s41586-022-05471-w

The cerebellum is thought to help detect and correct errors between intended and executed commands and is critical for social behaviours, cognition and emotion. Computations for motor control must be performed quickly to correct errors in real time and should be sensitive to small differences between patterns for fine error correction while being resilient to noise. Influential theories of cerebellar information processing have largely assumed random network connectivity, which increases the encoding capacity of the network's first layer. However, maximizing encoding capacity reduces the resilience to noise. To understand how neuronal circuits address this fundamental trade-off, we mapped the feedforward connectivity in the mouse cerebellar cortex using automated large-scale transmission electron microscopy and convolutional neural network-based image segmentation. We found that both the input and output layers of the circuit exhibit redundant and selective connectivity motifs, which contrast with prevailing models. Numerical simulations suggest that these redundant, non-random connectivity motifs increase the resilience to noise at a negligible cost to the overall encoding capacity. This work reveals how neuronal network structure can support a trade-off between encoding capacity and redundancy, unveiling principles of biological network architecture with implications for the design of artificial neural networks.

View Publication Page
02/18/16 | Structured dendritic inhibition supports branch-selective integration in CA1 pyramidal cells.
Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N
Neuron. 2016 Feb 18:. doi: 10.1016/j.neuron.2016.01.029

Neuronal circuit function is governed by precise patterns of connectivity between specialized groups of neurons. The diversity of GABAergic interneurons is a hallmark of cortical circuits, yet little is known about their targeting to individual postsynaptic dendrites. We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branch-selective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation.

View Publication Page
03/06/14 | Structured illumination microscopy (Chapter 15.)
Shao L, Rego EH
Fluorescence Microscopy: Super-resolution and other novel techniques:213–225. doi: 10.1016/B978-0-12-409513-7.00015-4
Cardona LabFunke Lab
04/13/16 | Structured learning of assignment models for neuron reconstruction to minimize topological errors.
Funke J, Klein J, Moreno-Noguer F, Cardona A, Cook M
IEEE 13th International Symposium on Biomedical Imaging (ISBI). 2016 Ap 13:607-11. doi: 10.1109/ ISBI.2016.7493341

Structured learning provides a powerful framework for empirical risk minimization on the predictions of structured models. It allows end-to-end learning of model parameters to minimize an application specific loss function. This framework is particularly well suited for discrete optimization models that are used for neuron reconstruction from anisotropic electron microscopy (EM) volumes. However, current methods are still learning unary potentials by training a classifier that is agnostic about the model it is used in. We believe the reason for that lies in the difficulties of (1) finding a representative training sample, and (2) designing an application specific loss function that captures the quality of a proposed solution. In this paper, we show how to find a representative training sample from human generated ground truth, and propose a loss function that is suitable to minimize topological errors in the reconstruction. We compare different training methods on two challenging EM-datasets. Our structured learning approach shows consistently higher reconstruction accuracy than other current learning methods.

View Publication Page
08/11/21 | Structured patterns of activity in pulse-coupled oscillator networks with varied connectivity.
Kadhim KL, Hermundstad AM, Brown KS
PLoS One. 2021 Aug 11;16(8):e0256034. doi: 10.1371/journal.pone.0256034

Identifying coordinated activity within complex systems is essential to linking their structure and function. We study collective activity in networks of pulse-coupled oscillators that have variable network connectivity and integrate-and-fire dynamics. Starting from random initial conditions, we see the emergence of three broad classes of behaviors that differ in their collective spiking statistics. In the first class ("temporally-irregular"), all nodes have variable inter-spike intervals, and the resulting firing patterns are irregular. In the second ("temporally-regular"), the network generates a coherent, repeating pattern of activity in which all nodes fire with the same constant inter-spike interval. In the third ("chimeric"), subgroups of coherently-firing nodes coexist with temporally-irregular nodes. Chimera states have previously been observed in networks of oscillators; here, we find that the notions of temporally-regular and chimeric states encompass a much richer set of dynamical patterns than has yet been described. We also find that degree heterogeneity and connection density have a strong effect on the resulting state: in binomial random networks, high degree variance and intermediate connection density tend to produce temporally-irregular dynamics, while low degree variance and high connection density tend to produce temporally-regular dynamics. Chimera states arise with more frequency in networks with intermediate degree variance and either high or low connection densities. Finally, we demonstrate that a normalized compression distance, computed via the Lempel-Ziv complexity of nodal spike trains, can be used to distinguish these three classes of behavior even when the phase relationship between nodes is arbitrary.

View Publication Page