Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- High Performance Computing
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing
- Viral Tools
- Vivarium
Abstract
The timing of spikes dictates a neuron’s impact on downstream circuits and behavior, and spike timing is determined by the membrane potential (Vm). However, due to technical challenges, it has been impossible to analyze the relative timing of Vm dynamics between neurons during behavior. Using large scale membrane voltage imaging, we simultaneously recorded Vm from many individual hippocampal neurons in animals engaged in a virtual spatial task. We found that relative phase of Vm theta oscillations across neurons exhibit gradual or discrete shifts depending on spatial position. This finding extends beyond previous studies showing Vm dynamics in single neurons or spiking activity in multiple neurons, revealing previously unknown evidence for consistent coding of space by spike-independent relative phase of Vm theta dynamics between neurons.



