Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1131-1140 of 3920 results
10/29/14 | Distinct substrate selectivity of a metabolic hydrolase from Mycobacterium tuberculosis.
Lukowski JK, Savas CP, Gehring AM, McKary MG, Adkins CT, Lavis LD, Hoops GC, Johnson RJ
Biochemistry. 2014 Oct 29;53(47):7386-95. doi: 10.1021/bi501108u

The transition between dormant and active Mycobacterium tuberculosis infection requires reorganization of its lipid metabolism and activation of a battery of serine hydrolase enzymes. Among these serine hydrolases, Rv0045c is a mycobacterial-specific serine hydrolase with limited sequence homology outside mycobacteria but structural homology to divergent bacterial hydrolase families. Herein, we determined the global substrate specificity of Rv0045c against a library of fluorogenic hydrolase substrates, constructed a combined experimental and computational model for its binding pocket, and performed comprehensive substitutional analysis to develop a structural map of its binding pocket. Rv0045c showed strong substrate selectivity toward short, straight chain alkyl esters with the highest activity toward four atom chains. This strong substrate preference was maintained through the combined action of residues in a flexible loop connecting the cap and α/β hydrolase domains and in residues close to the catalytic triad. Two residues bracketing the substrate-binding pocket (Gly90 and His187) were essential to maintaining the narrow substrate selectivity of Rv0045c toward various acyl ester substituents, as independent conversion of these residues significantly increased its catalytic activity and broadened its substrate specificity. Focused saturation mutagenesis of position 187 implicated this residue, as the differentiation point between the substrate specificity of Rv0045c and the structurally homologous ybfF hydrolase family. Insertion of the analogous tyrosine residue from ybfF hydrolases into Rv0045c increased the catalytic activity of Rv0045 by over 20-fold toward diverse ester substrates. The unique binding pocket structure and selectivity of Rv0045c provide molecular indications of its biological role and evidence for expanded substrate diversity in serine hydrolases from M. tuberculosis.

View Publication Page
06/27/14 | Distinguishing seemingly indistinguishable animals with computer vision.
Branson K
Nature Methods. 2014 Jun 27;11(7):721-2. doi: 10.1038/nmeth.3004

A general method to recognize and track unmarked animals within a population will enable new studies of social behavior and individuality.

View Publication Page
12/02/20 | Distributed control of motor circuits for backward walking in Drosophila.
Feng K, Sen R, minegishi r, Dübbert M, Bockemühl T, Büschges A, Dickson BJ
Nature Communications. 2020 Dec 02;11(1):6166. doi: 10.1038/s41467-020-19936-x

How do descending inputs from the brain control leg motor circuits to change how an animal walks? Conceptually, descending neurons are thought to function either as command-type neurons, in which a single type of descending neuron exerts a high-level control to elicit a coordinated change in motor output, or through a population coding mechanism, whereby a group of neurons, each with local effects, act in combination to elicit a global motor response. The Drosophila Moonwalker Descending Neurons (MDNs), which alter leg motor circuit dynamics so that the fly walks backwards, exemplify the command-type mechanism. Here, we identify several dozen MDN target neurons within the leg motor circuits, and show that two of them mediate distinct and highly-specific changes in leg muscle activity during backward walking: LBL40 neurons provide the hindleg power stroke during stance phase; LUL130 neurons lift the legs at the end of stance to initiate swing. Through these two effector neurons, MDN directly controls both the stance and swing phases of the backward stepping cycle. These findings suggest that command-type descending neurons can also operate through the distributed control of local motor circuits.

View Publication Page
01/30/24 | Distributed fMRI dynamics predict distinct EEG rhythms across sleep and wakefulness.
Leandro P. L. Jacob , Sydney M. Bailes , Stephanie D. Williams , Carsen Stringer , Laura D. Lewis
bioRxiv. 2024 Jan 30:. doi: 10.1101/2024.01.29.577429

The brain exhibits rich oscillatory dynamics that vary across tasks and states, such as the EEG oscillations that define sleep. These oscillations play critical roles in cognition and arousal, but the brainwide mechanisms underlying them are not yet described. Using simultaneous EEG and fast fMRI in subjects drifting between sleep and wakefulness, we developed a machine learning approach to investigate which brainwide fMRI dynamics predict alpha (8-12 Hz) and delta (1-4 Hz) rhythms. We predicted moment-by-moment EEG power from fMRI activity in held-out subjects, and found that information about alpha power was represented by a remarkably small set of regions, segregated in two distinct networks linked to arousal and visual systems. Conversely, delta rhythms were diffusely represented on a large spatial scale across the cortex. These results identify distributed networks that predict delta and alpha rhythms, and establish a computational framework for investigating fMRI brainwide dynamics underlying EEG oscillations.

View Publication Page
11/21/23 | Distributed representations of innate behaviors in the hypothalamus do not predict specialized functional centers.
Stefanos Stagkourakis , Giada Spigolon , Markus Marks , Michael Feyder , Joseph Kim , Pietro Perona , Marius Pachitariu , David J. Anderson
bioRxiv. 2023 Nov 21:. doi: 10.1101/2023.11.21.568163

Survival behaviors are orchestrated by hardwired circuits located in deep subcortical brain regions, most prominently the hypothalamus. Artificial activation of spatially localized, genetically defined hypothalamic cell populations is known to trigger distinct behaviors, suggesting a nucleus-centered organization of behavioral control. However, no study has investigated the hypothalamic representation of innate behaviors using unbiased, large-scale single neuron recordings. Here, using custom silicon probes, we performed recordings across the rostro-caudal extent of the medial hypothalamus in freely moving animals engaged in a diverse array of social and predator defense (“fear”) behaviors. Nucleus-averaged activity revealed spatially distributed generic “ignition signals” that occurred at the onset of each behavior, and did not identify sparse, nucleus-specific behavioral representations. Single-unit analysis revealed that social and fear behavior classes are encoded by activity in distinct sets of spatially distributed neuronal ensembles spanning the entire hypothalamic rostro-caudal axis. Individual ensemble membership, however, was drawn from neurons in 3-4 adjacent nuclei. Mixed selectivity was identified as the most prevalent mode of behavior representation by individual hypothalamic neurons. Encoding models indicated that a significant fraction of the variance in single neuron activity is explained by behavior. This work reveals that innate behaviors are encoded in the hypothalamus by activity in spatially distributed neural ensembles that each span multiple neighboring nuclei, complementing the prevailing view of hypothalamic behavioral control by single nucleus-restricted cell types derived from perturbational studies.

View Publication Page
Svoboda LabDarshan Lab
06/18/22 | Distributing task-related neural activity across a cortical network through task-independent connections
Christopher M. Kim , Arseny Finkelstein , Carson C. Chow , Karel Svoboda , Ran Darshan
bioRxiv. 2022 Jun 18:. doi: 10.1101/2022.06.17.496618

Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a limited subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. We found that task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

View Publication Page
Svoboda LabDarshan Lab
05/18/23 | Distributing task-related neural activity across a cortical network through task-independent connections.
Kim CM, Finkelstein A, Chow CC, Svoboda K, Darshan R
Nature Communications. 2023 May 18;14(1):2851. doi: 10.1038/s41467-023-38529-y

Task-related neural activity is widespread across populations of neurons during goal-directed behaviors. However, little is known about the synaptic reorganization and circuit mechanisms that lead to broad activity changes. Here we trained a subset of neurons in a spiking network with strong synaptic interactions to reproduce the activity of neurons in the motor cortex during a decision-making task. Task-related activity, resembling the neural data, emerged across the network, even in the untrained neurons. Analysis of trained networks showed that strong untrained synapses, which were independent of the task and determined the dynamical state of the network, mediated the spread of task-related activity. Optogenetic perturbations suggest that the motor cortex is strongly-coupled, supporting the applicability of the mechanism to cortical networks. Our results reveal a cortical mechanism that facilitates distributed representations of task-variables by spreading the activity from a subset of plastic neurons to the entire network through task-independent strong synapses.

View Publication Page
Magee Lab
01/21/15 | Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.
Harnett MT, Magee JC, Williams SR
Journal of Neuroscience. 2015 Jan 21;35(3):1024-37. doi: 10.1523/JNEUROSCI.2813-14.2015

The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons.

View Publication Page
02/01/08 | Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus.
Jarsky T, Mady R, Kennedy B, Spruston N
Journal of Comparative Neurology. 2008 Feb 1;506(4):535-47. doi: 10.1002/cne.21564

We performed patch-clamp recordings from morphologically identified and anatomically mapped pyramidal neurons of the ventral hippocampus to test the hypothesis that bursting neurons are distributed on a gradient from the CA2/CA1 border (proximal) through the subiculum (distal), with more bursting observed at distal locations. We find that the well-defined morphological boundaries between the hippocampal subregions CA1 and subiculum do not correspond to abrupt changes in electrophysiological properties. Rather, we observed that the percentage of bursting neurons is linearly correlated with position in the proximal-distal axis across the CA1 and the subiculum, the percentages of bursting neurons being 10% near the CA1-CA2 border, 24% at the CA1-subiculum border, and higher than 50% in the distal subiculum. The distribution of bursting neurons was paralleled by a gradient in afterdepolarization (ADP) amplitude. We also tested the hypothesis that there was an association between bursting and two previously described morphologically distinct groups of pyramidal neurons (twin and single apical dendrites) in the CA1 region. We found no difference in output mode between single and twin apical dendrite morphologies, which was consistent with the observation that the two morphologies were equally distributed across the transverse axis of the CA1 region. Taken together with the known organization of connections from CA3 to CA1 and CA1 to subiculum, our results indicate that bursting neurons are most likely to be connected to regular spiking neurons and vice versa.

View Publication Page
01/16/14 | Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits.
Van Engelenburg SB, Shtengel G, Sengupta P, Waki K, Jarnik M, Ablan SD, Freed EO, Hess HF, Lippincott-Schwartz J
Science. 2014 Jan 16;343(6171):653-6. doi: 10.1126/science.1247786

The human immunodeficiency virus (HIV) hijacks the endosomal sorting complexes required for transport (ESCRT) to mediate virus release from infected cells. The nanoscale organization of ESCRT machinery necessary for mediating viral abscission is unclear. Here, we applied three-dimensional superresolution microscopy and correlative electron microscopy to delineate the organization of ESCRT components at HIV assembly sites. We observed ESCRT subunits localized within the head of budding virions and released particles, with head-localized levels of CHMP2A decreasing relative to Tsg101 and CHMP4B upon virus abscission. Thus, the driving force for HIV release may derive from initial scaffolding of ESCRT subunits within the viral bud interior followed by plasma membrane association and selective remodeling of ESCRT subunits.

View Publication Page