Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1741-1750 of 3920 results
02/01/21 | Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes.
Kanfer G, Sarraf SA, Maman Y, Baldwin H, Dominguez-Martin E, Johnson KR, Ward ME, Kampmann M, Lippincott-Schwartz J, Youle RJ
Journal of Cell Biology. 2021 Feb 01;220(2):. doi: 10.1083/jcb.202006180

Genome-wide CRISPR screens have transformed our ability to systematically interrogate human gene function, but are currently limited to a subset of cellular phenotypes. We report a novel pooled screening approach for a wider range of cellular and subtle subcellular phenotypes. Machine learning and convolutional neural network models are trained on the subcellular phenotype to be queried. Genome-wide screening then utilizes cells stably expressing dCas9-KRAB (CRISPRi), photoactivatable fluorescent protein (PA-mCherry), and a lentiviral guide RNA (gRNA) pool. Cells are screened by using microscopy and classified by artificial intelligence (AI) algorithms, which precisely identify the genetically altered phenotype. Cells with the phenotype of interest are photoactivated and isolated via flow cytometry, and the gRNAs are identified by sequencing. A proof-of-concept screen accurately identified PINK1 as essential for Parkin recruitment to mitochondria. A genome-wide screen identified factors mediating TFEB relocation from the nucleus to the cytosol upon prolonged starvation. Twenty-one of the 64 hits called by the neural network model were independently validated, revealing new effectors of TFEB subcellular localization. This approach, AI-photoswitchable screening (AI-PS), offers a novel screening platform capable of classifying a broad range of mammalian subcellular morphologies, an approach largely unattainable with current methodologies at genome-wide scale.

View Publication Page
12/07/21 | Image-based representation of massive spatial transcriptomics datasets.
Stephan Preibisch , Nikos Karaiskos , Nikolaus Rajewsky
bioRxiv. 2021 Dec 07:. doi: 10.1101/2021.12.07.471629

We present STIM, an imaging-based computational framework for exploring, visualizing, and processing high-throughput spatial sequencing datasets. STIM is built on the powerful ImgLib2, N5 and BigDataViewer (BDV) frameworks enabling transfer of computer vision techniques to datasets with irregular measurement-spacing and arbitrary spatial resolution, such as spatial transcriptomics data generated by multiplexed targeted hybridization or spatial sequencing technologies. We illustrate STIM’s capabilities by representing, visualizing, and automatically registering publicly available spatial sequencing data from 14 serial sections of mouse brain tissue.

View Publication Page
06/19/13 | Imaging a population code for odor identity in the Drosophila mushroom body.
Campbell RA, Honegger KS, Qin H, Li W, Demir E, Turner GC
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2013 Jun 19;33(25):10568-81. doi: 10.1523/JNEUROSCI.0682-12.2013

The brain represents sensory information in the coordinated activity of neuronal ensembles. Although the microcircuits underlying olfactory processing are well characterized in Drosophila, no studies to date have examined the encoding of odor identity by populations of neurons and related it to the odor specificity of olfactory behavior. Here we used two-photon Ca(2+) imaging to record odor-evoked responses from >100 neurons simultaneously in the Drosophila mushroom body (MB). For the first time, we demonstrate quantitatively that MB population responses contain substantial information on odor identity. Using a series of increasingly similar odor blends, we identified conditions in which odor discrimination is difficult behaviorally. We found that MB ensemble responses accounted well for olfactory acuity in this task. Kenyon cell ensembles with as few as 25 cells were sufficient to match behavioral discrimination accuracy. Using a generalization task, we demonstrated that the MB population code could predict the flies' responses to novel odors. The degree to which flies generalized a learned aversive association to unfamiliar test odors depended upon the relative similarity between the odors' evoked MB activity patterns. Discrimination and generalization place different demands on the animal, yet the flies' choices in these tasks were reliably predicted based on the amount of overlap between MB activity patterns. Therefore, these different behaviors can be understood in the context of a single physiological framework.

View Publication Page
08/20/21 | Imaging Africa: a strategic approach to optical microscopy training in Africa.
Reiche MA, Warner DF, Aaron J, Khuon S, Fletcher DA, Hahn K, Rogers KL, Mhlanga M, Koch A, Quaye W, Chew T
Nature Methods. 2021 Aug 20;18(8):847-855. doi: 10.1038/s41592-021-01227-y
06/27/14 | Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits.
Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DG, Lichtman JW
Frontiers in Neural Circuits. 2014 Jun 27;8:68. doi: 10.3389/fncir.2014.00068

The automated tape-collecting ultramicrotome (ATUM) makes it possible to collect large numbers of ultrathin sections quickly-the equivalent of a petabyte of high resolution images each day. However, even high throughput image acquisition strategies generate images far more slowly (at present ~1 terabyte per day). We therefore developed WaferMapper, a software package that takes a multi-resolution approach to mapping and imaging select regions within a library of ultrathin sections. This automated method selects and directs imaging of corresponding regions within each section of an ultrathin section library (UTSL) that may contain many thousands of sections. Using WaferMapper, it is possible to map thousands of tissue sections at low resolution and target multiple points of interest for high resolution imaging based on anatomical landmarks. The program can also be used to expand previously imaged regions, acquire data under different imaging conditions, or re-image after additional tissue treatments.

View Publication Page
01/27/20 | Imaging Cellular Proteins and Structures
Arias IM, Alter HJ, Boyer JL, Cohen DE, Shafritz DA, Thorgeirsson SS, Wolkoff AW, Weigel AV, Snapp EL
The Liver : Biology and Pathobiology:965 - 978. doi: 10.1002/978111943681210.1002/9781119436812.ch72

This chapter describes many of the technologies, which have the potential to provide new insights into fundamental aspects of liver biology. Imaging live liver tissue in an animal with multiphoton microscopy coupled with photoactivatable fluorescent proteins and/or additional fluorescent proteins could be used to follow the lineage and fates of individual transplanted stem cells or developing transgenic cells in liver. Proteins or other molecules are labeled with a dye that can be excited with light source. Cells and proteins are generally too small to detect with the naked eye, relatively transparent when imaged by light microscopy, and are highly dynamic. With the increased signal to noise, isotropic and volumetric imaging and high speeds lattice light sheet allows for 3D super‐resolution microscopy, as well. Photomultiplier tubes, while capable of detecting and counting single photons, are less useful for high‐speed imaging because they normally only detect a single pixel at a time.

View Publication Page
01/01/14 | Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM.
Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P
Methods in Cell Biology. 2014;123:273-94. doi: 10.1016/B978-0-12-420138-5.00015-X

Many biomolecules in cells can be visualized with high sensitivity and specificity by fluorescence microscopy. However, the resolution of conventional light microscopy is limited by diffraction to ~200-250nm laterally and >500nm axially. Here, we describe superresolution methods based on single-molecule localization analysis of photoswitchable fluorophores (PALM: photoactivated localization microscopy) as well as our recent three-dimensional (3D) method (iPALM: interferometric PALM) that allows imaging with a resolution better than 20nm in all three dimensions. Considerations for their implementations, applications to multicolor imaging, and a recent development that extend the imaging depth of iPALM to ~750nm are discussed. As the spatial resolution of superresolution fluorescence microscopy converges with that of electron microscopy (EM), direct imaging of the same specimen using both approaches becomes feasible. This could be particularly useful for cross validation of experiments, and thus, we also describe recent methods that were developed for correlative superresolution fluorescence and EM.

View Publication Page
10/22/18 | Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope.
Scott BB, Thiberge SY, Guo C, Tervo DG, Brody CD, Karpova AY, Tank DW
Neuron. 2018 Oct 22:. doi: 10.1016/j.neuron.2018.09.050

Widefield imaging of calcium dynamics is an emerging method for mapping regional neural activity but is currently limited to restrained animals. Here we describe cScope, a head-mounted widefield macroscope developed to image large-scale cortical dynamics in rats during natural behavior. cScope provides a 7.8 × 4 mm field of view and dual illumination paths for both fluorescence and hemodynamic correction and can be fabricated at low cost using readily attainable components. We also report the development of Thy-1 transgenic rat strains with widespread neuronal expression of the calcium indicator GCaMP6f. We combined these two technologies to image large-scale calcium dynamics in the dorsal neocortex during a visual evidence accumulation task. Quantitative analysis of task-related dynamics revealed multiple regions having neural signals that encode behavioral choice and sensory evidence. Our results provide a new transgenic resource for calcium imaging in rats and extend the domain of head-mounted microscopes to larger-scale cortical dynamics.

View Publication Page
06/21/18 | Imaging dynamic and selective low-complexity domain interactions that control gene transcription.
Chong S, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R
Science (New York, N.Y.). 2018 Jun 21;361(6400):eaar2555. doi: 10.1126/science.aar2555

Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity domains (LCDs), but how they drive transactivation remains unclear. Here, live-cell single-molecule imaging reveals that TF-LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF-LCD hubs stabilize DNA binding, recruit RNA polymerase II (Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for novel drugs targeting gene regulatory interactions implicated in disease.

View Publication Page
09/23/16 | Imaging far and wide.
Chhetri RK, Keller PJ
eLife. 2016 Sep 23;5:e21072. doi: 10.7554/eLife.18659

A custom-built objective lens called the Mesolens allows relatively large biological specimens to be imaged with cellular resolution.

View Publication Page