Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2271-2280 of 3920 results
03/06/17 | Moonwalker descending neurons mediate visually evoked retreat in Drosophila.
Sen R, Wu M, Branson K, Robie A, Rubin GM, Dickson BJ
Current Biology : CB. 2017 Mar 6;27(5):766-71. doi: 10.1016/j.cub.2017.02.008

Insects, like most animals, tend to steer away from imminent threats [1-7]. Drosophila melanogaster, for example, generally initiate an escape take-off in response to a looming visual stimulus, mimicking a potential predator [8]. The escape response to a visual threat is, however, flexible [9-12] and can alternatively consist of walking backward away from the perceived threat [11], which may be a more effective response to ambush predators such as nymphal praying mantids [7]. Flexibility in escape behavior may also add an element of unpredictability that makes it difficult for predators to anticipate or learn the prey's likely response [3-6]. Whereas the fly's escape jump has been well studied [8, 9, 13-18], the neuronal underpinnings of evasive walking remain largely unexplored. We previously reported the identification of a cluster of descending neurons-the moonwalker descending neurons (MDNs)-the activity of which is necessary and sufficient to trigger backward walking [19], as well as a population of visual projection neurons-the lobula columnar 16 (LC16) cells-that respond to looming visual stimuli and elicit backward walking and turning [11]. Given the similarity of their activation phenotypes, we hypothesized that LC16 neurons induce backward walking via MDNs and that turning while walking backward might reflect asymmetric activation of the left and right MDNs. Here, we present data from functional imaging, behavioral epistasis, and unilateral activation experiments that support these hypotheses. We conclude that LC16 and MDNs are critical components of the neural circuit that transduces threatening visual stimuli into directional locomotor output.

View Publication Page
02/20/24 | More than just 'added value': The perils of not establishing shared core facilities in resource-constrained communities.
Rahmoon MA, Hobson CM, Aaron JS, Balasubramanian H, Chew T
Journal of Microscopy. 2024 Feb 20:. doi: 10.1111/jmi.13277

The accelerating pace of technological advancements necessitates specialised expertise and cutting-edge instruments to maintain competitive research in life sciences. Core facilities - collaborative laboratories equipped with state-of-the-art tools and staffed by expert personnel - are vital resources that support diverse scientific endeavours. However, their adoption in lower-income communities has been comparatively stagnant due to both financial and cultural challenges. This paper explores the perils of not supporting core facilities on national research enterprises, underscoring the need for balanced investments in discovery science and crucial infrastructure support. We explore the implications from the perspectives of funders, university leaders and lab heads. We advocate for a paradigm shift to recognise these facilities as essential components of national research efforts. Core facilities are positioned not as optional but as strategic investments that can catalyse breakthroughs, particularly in environments with limited resources.

View Publication Page
02/20/24 | More than just 'added value': The perils of not establishing shared core facilities in resource-constrained communities.
Rahmoon MA, Hobson CM, Aaron JS, Balasubramanian H, Chew T
J Microsc. 2024 Feb 20:. doi: 10.1111/jmi.13277

The accelerating pace of technological advancements necessitates specialised expertise and cutting-edge instruments to maintain competitive research in life sciences. Core facilities - collaborative laboratories equipped with state-of-the-art tools and staffed by expert personnel - are vital resources that support diverse scientific endeavours. However, their adoption in lower-income communities has been comparatively stagnant due to both financial and cultural challenges. This paper explores the perils of not supporting core facilities on national research enterprises, underscoring the need for balanced investments in discovery science and crucial infrastructure support. We explore the implications from the perspectives of funders, university leaders and lab heads. We advocate for a paradigm shift to recognise these facilities as essential components of national research efforts. Core facilities are positioned not as optional but as strategic investments that can catalyse breakthroughs, particularly in environments with limited resources.

View Publication Page
12/15/00 | Morphogenesis and gene expressions in the parthenogenetic embryogenesis of the pea aphid Acyrthosiphon pisum
T Miura , S Kambhampati , DL Stern
Seventy-First Annual Meeting of the Zoological Society of Japan ;17:66
02/09/15 | Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses.
Bloss EB, Puri R, Yuk F, Punsoni M, Hara Y, Janssen WG, McEwen BS, Morrison JH
Neurobiology of Aging. 2013 Jan;34(1):200-10. doi: 10.1016/j.neurobiolaging.2012.05.014

Age-related impairments of executive functions appear to be related to reductions of the number and plasticity of dendritic spine synapses in the prefrontal cortex (PFC). Experimental evidence suggests that synaptic plasticity is mediated by the spine actin cytoskeleton, and a major pathway regulating actin-based plasticity is controlled by phosphorylated LIM kinase (pLIMK). We asked whether aging resulted in altered synaptic density, morphology, and pLIMK expression in the rat prelimbic region of the PFC. Using unbiased electron microscopy, we found an approximate 50% decrease in the density of small synapses with aging, while the density of large synapses remained unchanged. Postembedding immunogold revealed that pLIMK localized predominantly to the postsynaptic density where it was increased in aging synapses by approximately 50%. Furthermore, the age-related increase in pLIMK occurred selectively within the largest subset of prelimbic PFC synapses. Because pLIMK is known to inhibit actin filament plasticity, these data support the hypothesis that age-related increases in pLIMK may explain the stability of large synapses at the expense of their plasticity.

View Publication Page
01/28/04 | Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression.
Hantman AW, van den Pol AN, Perl ER
The Journal of Neuroscience. 2004 Jan 28;24:836-42. doi: 10.1523/JNEUROSCI.4221-03.2004

The spinal substantia gelatinosa (SG) is known to be involved in the manipulation of nociceptive and thermal primary afferent input; however, the interrelationships of its neuronal components are poorly understood. As a step toward expanding understanding, we took a relatively unique approach by concentrating on a set of SG neurons selectively labeled by green fluorescent protein (GFP) in a transgenic mouse. These GFP-expressing SG neurons prove to have homogenous morphological and electrophysiological properties, are systematically spaced in the SG, contain GABA, receive C-fiber primary afferent input, and upregulate c-Fos protein in response to noxious stimuli. Together, the properties established for these GFP-labeled neurons are consistent with a modular SG organization in which afferent activity related to nociception or other C-fiber signaling are subject to integration/modulation by repeating, similar circuits of neurons.

View Publication Page
06/01/09 | Morphological characterization of single fan-shaped body neurons in Drosophila melanogaster.
Li W, Pan Y, Wang Z, Gong H, Gong Z, Liu L
Cell and Tissue Research. 2009 Jun;336(3):509-19. doi: 10.1007/s00441-009-0781-2

The fan-shaped body is the largest substructure of the central complex in Drosophila melanogaster. Two groups of large-field neurons that innervate the fan-shaped body, viz., F1 and F5 neurons, have recently been found to be involved in visual pattern memory for "contour orientation" and "elevation" in a rut-dependent manner. The F5 neurons have been found to be responsible for the parameter "elevation" in a for-dependent manner. We have shown here that the F1 neuron also affects visual memory for "contour orientation" in a for-dependent way. With the help of Gal4/UAS and FLP-out techniques, we have characterized the morphological features of these two groups of neurons at single neuron resolution. We have observed that F1 or F5 neurons are groups of isomorphic individual neurons. Single F1 neurons have three main arborization regions: one in the first layer of the fan-shaped body, one in the ventral body, and another in the inferior medial protocerebrum. Single F5 neurons have two arborization regions: one in the fifth layer of the fan-shaped body and the other in the superior medial protocerebrum. The polarity of the F1 and F5 neurons has been studied with the Syt-GFP marker. Our results indicate the existence of presynaptic sites of both F1 and F5 neurons located in the fan-shaped body and postsynaptic sites outside of the fan-shaped body.

View Publication Page
06/30/11 | Morphological evolution caused by many subtle-effect substitutions in regulatory DNA.
Frankel N, Erezyilmaz DF, McGregor AP, Wang S, Payre Fc, Stern DL
Nature. 2011 Jun 30;474(7353):598-603. doi: 10.1038/nature10200

Morphology evolves often through changes in developmental genes, but the causal mutations, and their effects, remain largely unknown. The evolution of naked cuticle on larvae of Drosophila sechellia resulted from changes in five transcriptional enhancers of shavenbaby (svb), a transcript of the ovo locus that encodes a transcription factor that governs morphogenesis of microtrichiae, hereafter called ’trichomes’. Here we show that the function of one of these enhancers evolved through multiple single-nucleotide substitutions that altered both the timing and level of svb expression. The consequences of these nucleotide substitutions on larval morphology were quantified with a novel functional assay. We found that each substitution had a relatively small phenotypic effect, and that many nucleotide changes account for this large morphological difference. In addition, we observed that the substitutions had non-additive effects. These data provide unprecedented resolution of the phenotypic effects of substitutions and show how individual nucleotide changes in a transcriptional enhancer have caused morphological evolution.

View Publication Page
08/02/07 | Morphological evolution through multiple cis-regulatory mutations at a single gene.
McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre Fc, Stern DL
Nature. 2007 Aug 2;448(7153):587-90. doi: 10.1038/nature05988

One central, and yet unsolved, question in evolutionary biology is the relationship between the genetic variants segregating within species and the causes of morphological differences between species. The classic neo-darwinian view postulates that species differences result from the accumulation of small-effect changes at multiple loci. However, many examples support the possible role of larger abrupt changes in the expression of developmental genes in morphological evolution. Although this evidence might be considered a challenge to a neo-darwinian micromutationist view of evolution, there are currently few examples of the actual genes causing morphological differences between species. Here we examine the genetic basis of a trichome pattern difference between Drosophila species, previously shown to result from the evolution of a single gene, shavenbaby (svb), probably through cis-regulatory changes. We first identified three distinct svb enhancers from D. melanogaster driving reporter gene expression in partly overlapping patterns that together recapitulate endogenous svb expression. All three homologous enhancers from D. sechellia drive expression in modified patterns, in a direction consistent with the evolved svb expression pattern. To test the influence of these enhancers on the actual phenotypic difference, we conducted interspecific genetic mapping at a resolution sufficient to recover multiple intragenic recombinants. This functional analysis revealed that independent genetic regions upstream of svb that overlap the three identified enhancers are collectively required to generate the D. sechellia trichome pattern. Our results demonstrate that the accumulation of multiple small-effect changes at a single locus underlies the evolution of a morphological difference between species. These data support the view that alleles of large effect that distinguish species may sometimes reflect the accumulation of multiple mutations of small effect at select genes.

View Publication Page

We describe a genetic mosaic system in Drosophila, in which a dominant repressor of a cell marker is placed in trans to a mutant gene of interest. Mitotic recombination events between homologous chromosomes generate homozygous mutant cells, which are exclusively labeled due to loss of the repressor. Using this system, we are able to visualize axonal projections and dendritic elaboration in large neuroblast clones and single neuron clones with a membrane-targeted GFP marker. This new method allows for the study of gene functions in neuroblast proliferation, axon guidance, and dendritic elaboration in the complex central nervous system. As an example, we show that the short stop gene is required in mushroom body neurons for the extension and guidance of their axons.

View Publication Page