Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 241-250 of 3920 results
11/01/18 | A resource for the antennal lobe provided by the connectome of glomerulus VA1v.
Horne JA, Langille C, McLin S, Wiederman M, Lu Z, Xu CS, Plaza SM, Scheffer LK, Hess HF, Meinertzhagen IA
eLife. 2018 Nov 01;7:. doi: 10.7554/eLife.37550

Using FIB-SEM we report the entire synaptic connectome of glomerulus VA1v of the right antennal lobe in . Within the glomerulus we densely reconstructed all neurons, including hitherto elusive local interneurons. The -positive, sexually dimorphic VA1v included >11,140 presynaptic sites with ~38,050 postsynaptic dendrites. These connected input olfactory receptor neurons (ORNs, 51 ipsilateral, 56 contralateral), output projection neurons (18 PNs), and local interneurons (56 of >150 previously reported LNs). ORNs are predominantly presynaptic and PNs predominantly postsynaptic; newly reported LN circuits are largely an equal mixture and confer extensive synaptic reciprocity, except the newly reported LN2V with input from ORNs and outputs mostly to monoglomerular PNs, however. PNs were more numerous than previously reported from genetic screens, suggesting that the latter failed to reach saturation. We report a matrix of 192 bodies each having 50 connections; these form 88% of the glomerulus' pre/postsynaptic sites.

View Publication Page
07/05/23 | A rise-to-threshold process for a relative-value decision.
Vijayan V, Wang F, Wang K, Chakravorty A, Adachi A, Akhlaghpour H, Dickson BJ, Maimon G
Nature. 2023 Jul 05;619(7970):563-571. doi: 10.1038/s41586-023-06271-6

Whereas progress has been made in the identification of neural signals related to rapid, cued decisions, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes. Drosophila search for many seconds to minutes for egg-laying sites with high relative value and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.

View Publication Page
02/26/18 | A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters.
Piatkevich KD, Jung EE, Straub C, Linghu C, Park D, Suk H, Hochbaum DR, Goodwin D, Pnevmatikakis E, Pak N, Kawashima T, Yang C, Rhoades JL, Shemesh O, Asano S, Yoon Y, Freifeld L, Saulnier JL, Riegler C, Engert F, Hughes T, Drobizhev M, Szabo B, Ahrens MB, Flavell SW, Sabatini BL, Boyden ES
Nature Chemical Biology. 2018 Feb 26:. doi: 10.1038/s41589-018-0004-9

We developed a new way to engineer complex proteins toward multidimensional specifications using a simple, yet scalable, directed evolution strategy. By robotically picking mammalian cells that were identified, under a microscope, as expressing proteins that simultaneously exhibit several specific properties, we can screen hundreds of thousands of proteins in a library in just a few hours, evaluating each along multiple performance axes. To demonstrate the power of this approach, we created a genetically encoded fluorescent voltage indicator, simultaneously optimizing its brightness and membrane localization using our microscopy-guided cell-picking strategy. We produced the high-performance opsin-based fluorescent voltage reporter Archon1 and demonstrated its utility by imaging spiking and millivolt-scale subthreshold and synaptic activity in acute mouse brain slices and in larval zebrafish in vivo. We also measured postsynaptic responses downstream of optogenetically controlled neurons in C. elegans.

View Publication Page
04/13/11 | A role for actin arcs in the leading-edge advance of migrating cells.
Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW, Kachar B, Lippincott-Schwartz J
Nature cell biology. 2011 Apr;13(4):371-81. doi: 10.1038/ncb2205

Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.

View Publication Page
Riddiford LabTruman Lab
04/01/10 | A role for juvenile hormone in the prepupal development of Drosophila melanogaster.
Riddiford LM, Truman JW, Mirth CK, Shen Y
Development. 2010 Apr;137:1117-26. doi: 10.1242/dev.037218

To elucidate the role of juvenile hormone (JH) in metamorphosis of Drosophila melanogaster, the corpora allata cells, which produce JH, were killed using the cell death gene grim. These allatectomized (CAX) larvae were smaller at pupariation and died at head eversion. They showed premature ecdysone receptor B1 (EcR-B1) in the photoreceptors and in the optic lobe, downregulation of proliferation in the optic lobe, and separation of R7 from R8 in the medulla during the prepupal period. All of these effects of allatectomy were reversed by feeding third instar larvae on a diet containing the JH mimic (JHM) pyriproxifen or by application of JH III or JHM at the onset of wandering. Eye and optic lobe development in the Methoprene-tolerant (Met)-null mutant mimicked that of CAX prepupae, but the mutant formed viable adults, which had marked abnormalities in the organization of their optic lobe neuropils. Feeding Met(27) larvae on the JHM diet did not rescue the premature EcR-B1 expression or the downregulation of proliferation but did partially rescue the premature separation of R7, suggesting that other pathways besides Met might be involved in mediating the response to JH. Selective expression of Met RNAi in the photoreceptors caused their premature expression of EcR-B1 and the separation of R7 and R8, but driving Met RNAi in lamina neurons led only to the precocious appearance of EcR-B1 in the lamina. Thus, the lack of JH and its receptor Met causes a heterochronic shift in the development of the visual system that is likely to result from some cells ’misinterpreting’ the ecdysteroid peaks that drive metamorphosis.

View Publication Page
12/06/07 | A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity.
Dudman JT, Tsay D, Siegelbaum SA
Neuron. 2007 Dec 6;56(5):866-79. doi: 10.1016/j.neuron.2007.10.020

Synaptic potentials originating at distal dendritic locations are severely attenuated when they reach the soma and, thus, are poor at driving somatic spikes. Nonetheless, distal inputs convey essential information, suggesting that such inputs may be important for compartmentalized dendritic signaling. Here we report a new plasticity rule in which stimulation of distal perforant path inputs to hippocampal CA1 pyramidal neurons induces long-term potentiation at the CA1 proximal Schaffer collateral synapses when the two inputs are paired at a precise interval. This subthreshold form of heterosynaptic plasticity occurs in the absence of somatic spiking but requires activation of both NMDA receptors and IP(3) receptor-dependent release of Ca(2+) from internal stores. Our results suggest that direct sensory information arriving at distal CA1 synapses through the perforant path provide compartmentalized, instructive signals that assess the saliency of mnemonic information propagated through the hippocampal circuit to proximal synapses.

View Publication Page
12/03/98 | A role of Ultrabithorax in morphological differences between Drosophila species.
Stern DL
Nature. 1998 Dec 3;396(6710):463-6. doi: 10.1038/24863

The mechanisms underlying the evolution of morphology are poorly understood. Distantly related taxa sometimes exhibit correlations between morphological differences and patterns of gene expression, but such comparisons cannot establish how mechanisms evolve to generate diverse morphologies. Answers to these questions require resolution of the nature of developmental evolution within and between closely related species. Here I show how the detailed regulation of the Hox gene Ultrabithorax patterns trichomes on the posterior femur of the second leg in Drosophila melanogaster, and that evolution of Ultrabithorax has contributed to divergence of this feature among closely related species. The cis-regulatory regions of Ultrabithorax, and not the protein itself, appear to have evolved. This study provides experimental evidence that cis-regulatory evolution is one way in which conserved proteins have promoted morphological diversity.

View Publication Page
08/23/99 | A room-temperature molten salt prepared from AuCl3 and 1-Ethyl-3-methylimidazolium chloride.
Schreiter ER, Stevens JE, Ortwerth MF, Freeman RG
Inorganic Chemistry. 1999 Aug 23;38(17):3935-7. doi: 10.1021/ic990062u

A room-temperature molten salt has been prepared from AuCl3 and 1-ethyl-3-methylimidazolium chloride (EMIC). At a ratio of 1 mol of AuCl3 to 2 mol of EMIC, the salt is a bright yellow-orange and shows Raman spectral features at 170, 328, and 352 cm-1, indicating the presence of AuCl4-. Ab initio calculations indicate that a dinuclear Au2Cl7- species containing a bridging chlorine should be stable, but no such species has been observed.

View Publication Page
09/26/23 | A rotational velocity estimate constructed through visuomotor competition updates the fly's neural compass
Brad K Hulse , Angel Stanoev , Daniel B Turner-Evans , Johannes Seelig , Vivek Jayaraman
bioRxiv. 2023 Sep 26:. doi: 10.1101/2023.09.25.559373

Navigating animals continuously integrate velocity signals to update internal representations of their directional heading and spatial location in the environment. How neural circuits combine sensory and motor information to construct these velocity estimates and how these self-motion signals, in turn, update internal representations that support navigational computations are not well understood. Recent work in Drosophila has identified a neural circuit that performs angular path integration to compute the fly's head direction, but the nature of the velocity signal is unknown. Here we identify a pair of neurons necessary for angular path integration that encode the fly's rotational velocity with high accuracy using both visual optic flow and motor information. This estimate of rotational velocity does not rely on a moment-to-moment integration of sensory and motor information. Rather, when visual and motor signals are congruent, these neurons prioritize motor information over visual information, and when the two signals are in conflict, reciprocal inhibition selects either the motor or visual signal. Together, our results suggest that flies update their head direction representation by constructing an estimate of rotational velocity that relies primarily on motor information and only incorporates optic flow signals in specific sensorimotor contexts, such as when the motor signal is absent.

View Publication Page
07/26/22 | A scalable and modular automated pipeline for stitching of large electron microscopy datasets.
Mahalingam G, Torres R, Kapner D, Trautman ET, Fliss T, Seshamani S, Perlman E, Young R, Kinn S, Buchanan J, Takeno MM, Yin W, Bumbarger DJ, Gwinn RP, Nyhus J, Lein E, Smith SJ, Reid RC, Khairy KA, Saalfeld S, Collman F, Macarico da Costa N
eLife. 2022 Jul 26;11:. doi: 10.7554/eLife.76534

Serial-section electronmicroscopy (ssEM) is themethod of choice for studyingmacroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so called connectomes. In order to use this data, consisting of up to 10 individual EM images, it must be assembled into a volume, requiring seamless 2D stitching from each physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render (27) services used in the volume assembly of the brain of adult Drosophilamelanogaster (30). It achieves high throughput by operating on themeta-data and transformations of each image stored in a database, thus eliminating the need to render intermediate output. ASAP ismodular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (28; 8) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.

View Publication Page