Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2411-2420 of 3920 results
02/17/14 | Neural circuit components of the drosophila OFF motion vision pathway.
Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A
Current Biology. 2014 Feb 17;24(4):385-92. doi: 10.1016/j.cub.2014.01.006

BACKGROUND: Detecting the direction of visual motion is an essential task of the early visual system. The Reichardt detector has been proven to be a faithful description of the underlying computation in insects. A series of recent studies addressed the neural implementation of the Reichardt detector in Drosophila revealing the overall layout in parallel ON and OFF channels, its input neurons from the lamina (L1→ON, and L2→OFF), and the respective output neurons to the lobula plate (ON→T4, and OFF→T5). While anatomical studies showed that T4 cells receive input from L1 via Mi1 and Tm3 cells, the neurons connecting L2 to T5 cells have not been identified so far. It is, however, known that L2 contacts, among others, two neurons, called Tm2 and L4, which show a pronounced directionality in their wiring. RESULTS: We characterized the visual response properties of both Tm2 and L4 neurons via Ca(2+) imaging. We found that Tm2 and L4 cells respond with an increase in activity to moving OFF edges in a direction-unselective manner. To investigate their participation in motion vision, we blocked their output while recording from downstream tangential cells in the lobula plate. Silencing of Tm2 and L4 completely abolishes the response to moving OFF edges. CONCLUSIONS: Our results demonstrate that both cell types are essential components of the Drosophila OFF motion vision pathway, prior to the computation of directionality in the dendrites of T5 cells.

View Publication Page
09/18/23 | Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement
Yoshinori Aso , Daichi Yamada , Daniel Bushey , Karen Hibbard , Megan Sammons , Hideo Otsuna , Yichun Shuai , Toshihide Hige
eLife. 2023 Sep 18:. doi: 10.7554/eLife.85756

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After training, disinhibition from the appetitive-memory MBONs enhances the response of UpWiNs to reward-predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was initiated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.

View Publication Page
01/01/21 | Neural circuit mechanisms of sexual receptivity in Drosophila females.
Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ
Nature. 2021 Jan 01;589(7843):577-81. doi: 10.1038/s41586-020-2972-7

Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.

View Publication Page
06/07/22 | Neural circuit pathology driven by Shank3 mutation disrupts social behaviors.
Kim S, Kim Y, Song I, Ujihara Y, Kim N, Jiang Y, Yin HH, Lee T, Kim IH
Cell Reports. 2022 Jun 07;39(10):110906. doi: 10.1016/j.celrep.2022.110906

Dysfunctional sociability is a core symptom in autism spectrum disorder (ASD) that may arise from neural-network dysconnectivity between multiple brain regions. However, pathogenic neural-network mechanisms underlying social dysfunction are largely unknown. Here, we demonstrate that circuit-selective mutation (ctMUT) of ASD-risk Shank3 gene within a unidirectional projection from the prefrontal cortex to the basolateral amygdala alters spine morphology and excitatory-inhibitory balance of the circuit. Shank3 ctMUT mice show reduced sociability as well as elevated neural activity and its amplitude variability, which is consistent with the neuroimaging results from human ASD patients. Moreover, the circuit hyper-activity disrupts the temporal correlation of socially tuned neurons to the events of social interactions. Finally, optogenetic circuit activation in wild-type mice partially recapitulates the reduced sociability of Shank3 ctMUT mice, while circuit inhibition in Shank3 ctMUT mice partially rescues social behavior. Collectively, these results highlight a circuit-level pathogenic mechanism of Shank3 mutation that drives social dysfunction.

View Publication Page
07/16/15 | Neural circuit to integrate opposing motions in the visual field.
Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A
Cell. 2015 Jul 16;162:351-62. doi: 10.1016/j.cell.2015.06.035

When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information.
•Discovery of bi-stratified glutamatergic lobula plate-intrinsic (LPi) interneurons•LPi neurons provide visual null direction inhibition to wide-field tangential cells•Blocking LPi activity leads to target neurons responding to inadequate motion cues•Motion opponency thus increases flow-field selectivity
Newly identified inhibitory neurons are central to an integrative circuit that enables Drosophila to process visual cues with opposite motions generated during flight. The neurons are required to discriminate between distinct complex motion patterns, indicating that neural processing of opposing cues can yield outcomes beyond the simple sum of two inputs.

View Publication Page
03/02/20 | Neural circuitry linking mating and egg laying in Drosophila females.
Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Bock D, Dickson BJ
Nature. 2020 Mar 02;579(7797):101-105. doi: 10.1038/s41586-020-2055-9

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying. Sex peptide is detected by sensory neurons in the uterus, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.

View Publication Page
Sternson Lab
06/01/13 | Neural circuits and motivational processes for hunger.
Sternson SM, Betley JN, Cao ZF
Current Opinion in Neurobiology. 2013 Jun;23(3):353-60. doi: 10.1016/j.conb.2013.04.006

How does an organism’s internal state direct its actions? At one moment an animal forages for food with acrobatic feats such as tree climbing and jumping between branches. At another time, it travels along the ground to find water or a mate, exposing itself to predators along the way. These behaviors are costly in terms of energy or physical risk, and the likelihood of performing one set of actions relative to another is strongly modulated by internal state. For example, an animal in energy deficit searches for food and a dehydrated animal looks for water. The crosstalk between physiological state and motivational processes influences behavioral intensity and intent, but the underlying neural circuits are poorly understood. Molecular genetics along with optogenetic and pharmacogenetic tools for perturbing neuron function have enabled cell type-selective dissection of circuits that mediate behavioral responses to physiological state changes. Here, we review recent progress into neural circuit analysis of hunger in the mouse by focusing on a starvation-sensitive neuron population in the hypothalamus that is sufficient to promote voracious eating. We also consider research into the motivational processes that are thought to underlie hunger in order to outline considerations for bridging the gap between homeostatic and motivational neural circuits.

View Publication Page
06/14/16 | Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes.
Hale ME, Katz HR, Peek MY, Fremont RT
Journal of Neurogenetics. 2016 Jun;30(2):89-100. doi: 10.1080/01677063.2016.1182526

Startle behaviors are rapid, high-performance motor responses to threatening stimuli. Startle responses have been identified in a broad range of species across animal diversity. For investigations of neural circuit structure and function, these behaviors offer a number of benefits, including that they are driven by large and identifiable neurons and their neural control is simple in comparison to other behaviors. Among vertebrates, the best-known startle circuit is the Mauthner cell circuit of fishes. In recent years, genetic approaches in zebrafish have provided key tools for morphological and physiological dissection of circuits and greatly extended understanding of their architecture. Here we discuss the startle circuit of fishes, with a focus on the Mauthner cells and associated interneurons called spiral fiber neurons and we add new observations on hindbrain circuit organization. We also briefly review and compare startle circuits of several other taxa, paying particular attention to how movement direction is controlled.

View Publication Page
02/03/16 | Neural circuits underlying visually evoked escapes in larval zebrafish.
Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, Engert F, Del Bene F
Neuron. 2016 Feb 3;89(3):613-628. doi: 10.1016/j.neuron.2015.12.021

Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.

View Publication Page
Svoboda Lab
06/02/13 | Neural coding during active somatosensation revealed using illusory touch.
O’Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun Q, Huber D, Svoboda K
Nature Neuroscience. 2013 Jun 2;16(7):958-65. doi: 10.1038/nn.3419

Active sensation requires the convergence of external stimuli with representations of body movements. We used mouse behavior, electrophysiology and optogenetics to dissect the temporal interactions among whisker movement, neural activity and sensation of touch. We photostimulated layer 4 activity in single barrels in a closed loop with whisking. Mimicking touch-related neural activity caused illusory perception of an object at a particular location, but scrambling the timing of the spikes over one whisking cycle (tens of milliseconds) did not abolish the illusion, indicating that knowledge of instantaneous whisker position is unnecessary for discriminating object locations. The illusions were induced only during bouts of directed whisking, when mice expected touch, and in the relevant barrel. Reducing activity biased behavior, consistent with a spike count code for object detection at a particular location. Our results show that mice integrate coding of touch with movement over timescales of a whisking bout to produce perception of active touch.

View Publication Page