Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3111-3120 of 3920 results
Svoboda LabMouseLight
03/12/19 | Single-neuron axonal reconstruction: The search for a wiring diagram of the brain.
Economo MN, Winnubst J, Bas E, Ferreira TA, Chandrashekar J
The Journal of Comparative Neurology. 2019 Mar 12:. doi: 10.1002/cne.24674

Reconstruction of the axonal projection patterns of single neurons has been an important tool for understanding both the diversity of cell types in the brain and the logic of information flow between brain regions. Innovative approaches now enable the complete reconstruction of axonal projection patterns of individual neurons with vastly increased throughput. Here we review how advances in genetic, imaging, and computational techniques have been exploited for axonal reconstruction. We also discuss how new innovations could enable the integration of genetic and physiological information with axonal morphology for producing a census of cell types in the mammalian brain at scale. This article is protected by copyright. All rights reserved.

View Publication Page
02/10/17 | Single-Neuron Gene Expression Analysis Using the Maxwell® 16 LEV System in the Neural Systems and Behavior Course
Rayna M. Harris , Adriane G. Otopalik , Colin J. Smith , Dirk Bucher , Jorge Golowasch , Hans A. Hofmann
bioRxiv. 2017 Feb 10:. doi: 10.1101/107342

Gene expression analysis from single cells has become increasingly prominent across biological disciplines; thus, it is important to train students in these approaches. Here, we present an experimental and analysis pipeline that we developed for the Neural Systems & Behavior (NS&B) course at Marine Biological Laboratory. Our approach used the Maxwell® 16 LEV simplyRNA Tissue Kit and GoTaq® 2-Step RT-qPCR System for gene expression analysis from single neurons of the crustacean stomatogastric ganglion, a model system to study the generation of rhythmic motor patterns. We used double-stranded RNA to knockdown expression of a putative neuromodulator-activated sodium channel. We then examined the electrophysiological responses to known neuromodulators and confirmed that the response was reduced. Finally, we measured how mRNA levels of several ion channel genes changed in response. Our results provide new insights into the neural mechanisms underlying the generation and modulation of rhythmic motor patterns.

View Publication Page
01/01/10 | Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics.
Manley S, Gillette JM, Lippincott-Schwartz J
Methods in enzymology. 2010;475:109-20. doi: 10.1016/S0076-6879(10)75005-9

Recent developments in single-molecule localization techniques using photoactivatable fluorescent proteins have allowed the probing of single-molecule motion in a living cell with high specificity, millisecond time resolution, and nanometer spatial resolution. Analyzing the dynamics of individual molecules at high densities in this manner promises to provide new insights into the mechanisms of many biological processes, including protein heterogeneity in the plasma membrane, the dynamics of cytoskeletal flow, and clustering of receptor complexes in response to signaling cues. Here we describe the method of single-molecule tracking photoactivated localization microscopy (sptPALM) and discuss how its use can contribute to a quantitative understanding of fundamental cellular processes.

View Publication Page
Grigorieff Lab
05/03/17 | Single-protein detection in crowded molecular environments in cryo-EM images.
Rickgauer JP, Grigorieff N, Denk W
eLife. 2017 May 03;6:. doi: 10.7554/eLife.25648

We present an approach to study macromolecular assemblies by detecting component proteins' characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and-in the presence of protein background-a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material.

View Publication Page
08/15/08 | Single-synapse ablation and long-term imaging in live C. elegans.
Allen PB, Sgro AE, Chao DL, Doepker BE, Scott Edgar J, Shen K, Chiu DT
J Neurosci Methods. 09/2008;173(1):20-6. doi: 10.1016/j.jneumeth.2008.05.007

Synapses are individually operated, computational units for neural communication. To manipulate physically individual synapses in a living organism, we have developed a laser ablation technique for removing single synapses in live neurons in C. elegans that operates without apparent damage to the axon. As a complementary technique, we applied microfluidic immobilization of C. elegans to facilitate long-term fluorescence imaging and observation of neuronal development. With this technique, we directly demonstrated the existence of competition between developing synapses in the HSNL motor neuron.

View Publication Page
Riddiford Lab
04/01/07 | Size assessment and growth control: how adult size is determined in insects.
Mirth CK, Riddiford LM
BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2007 Apr;29(4):344-55. doi: 10.1002/bies.20552

Size control depends on both the regulation of growth rate and the control over when to stop growing. Studies of Drosophila melanogaster have shown that insulin and Target of Rapamycin (TOR) pathways play principal roles in controlling nutrition-dependent growth rates. A TOR-mediated nutrient sensor in the fat body detects nutrient availability, and regulates insulin signaling in peripheral tissues, which in turn controls larval growth rates. After larvae initiate metamorphosis, growth stops. For growth to stop at the correct time, larvae need to surpass a critical weight. Recently, it was found that the insulin-dependent growth of the prothoracic gland is involved in assessing when critical weight has been reached. Furthermore, mutations in DHR4, a repressor of ecdysone signaling, reduce critical weight and adult size. Thus, the mechanisms that control growth rates converge on those assessing size to ensure that the larvae attain the appropriate size at metamorphosis.

View Publication Page
04/04/20 | Size-dependent secretory protein reflux into the cytosol in association with acute endoplasmic reticulum stress.
Lajoie P, Snapp EL
Traffic. 2020 Apr 04:. doi: 10.1111/tra.12729

Once secretory proteins have been targeted to the endoplasmic reticulum (ER) lumen, the proteins typically remain partitioned from the cytosol. If the secretory proteins misfold, they can be unfolded and retrotranslocated into the cytosol for destruction by the proteasome by ER-associated protein Degradation (ERAD). Here, we report that correctly folded and targeted luminal ER fluorescent protein reporters accumulate in the cytosol during acute misfolded secretory protein stress in yeast. Photoactivation fluorescence microscopy experiments reveal that luminal reporters already localized to the ER relocalize to the cytosol, even in the absence of essential ERAD machinery. We named this process "ER reflux." Reflux appears to be regulated in a size-dependent manner for reporters. Interestingly, prior heat shock stress also prevents ER stress-induced reflux. Together, our findings establish a new ER stress-regulated pathway for relocalization of small luminal secretory proteins into the cytosol, distinct from the ERAD and pre-emptive quality control pathways. Importantly, our results highlight the value of fully characterizing the cell biology of reporters and describe a simple modification to maintain luminal ER reporters in the ER during acute ER stress. This article is protected by copyright. All rights reserved.

View Publication Page
01/13/14 | Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models.
Wheeler TJ, Clements J, Finn RD
BMC Bioinformatics. 2014 Jan 13;15:7. doi: 10.1186/1471-2105-15-7

BACKGROUND: Logos are commonly used in molecular biology to provide a compact graphical representation of the conservation pattern of a set of sequences. They render the information contained in sequence alignments or profile hidden Markov models by drawing a stack of letters for each position, where the height of the stack corresponds to the conservation at that position, and the height of each letter within a stack depends on the frequency of that letter at that position. RESULTS: We present a new tool and web server, called Skylign, which provides a unified framework for creating logos for both sequence alignments and profile hidden Markov models. In addition to static image files, Skylign creates a novel interactive logo plot for inclusion in web pages. These interactive logos enable scrolling, zooming, and inspection of underlying values. Skylign can avoid sampling bias in sequence alignments by down-weighting redundant sequences and by combining observed counts with informed priors. It also simplifies the representation of gap parameters, and can optionally scale letter heights based on alternate calculations of the conservation of a position. CONCLUSION: Skylign is available as a website, a scriptable web service with a RESTful interface, and as a software package for download. Skylign’s interactive logos are easily incorporated into a web page with just a few lines of HTML markup. Skylign may be found at http://skylign.org.

View Publication Page
Magee Lab
10/22/03 | Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons.
McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2003 Oct 22;23(29):9687-95. doi: 10.1002/cbic.201000254

Although the function of sleep remains elusive, several lines of evidence suggest that sleep has an important role in learning and memory. In light of the available data and with the prevalence of sleep deprivation (SD), we sought to determine the effect of SD on neuronal functioning. We found that the exposure of rats to 72 hr of primarily rapid eye movement SD impaired their subsequent performance on a hippocampus-dependent spatial learning task but had no effect on an amygdala-dependent learning task. To determine the underlying cellular level mechanisms of this hippocampal deficit, we examined the impact of SD on several fundamental aspects of membrane excitability and synaptic physiology in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. We found that neuronal excitability was severely reduced in CA1 neurons but not in granule cells and that the production of long-term potentiation of synaptic strength was inhibited in both areas. Using multiple SD methods we further attempted to differentiate the effects of sleep deprivation from those associated with the nonspecific stress induced by the sleep deprivation methods. Together these data suggest that failure to acquire adequate sleep produces several molecular and cellular level alterations that profoundly inhibit hippocampal functioning.

View Publication Page
Magee Lab
02/01/06 | Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus.
McDermott CM, Hardy MN, Bazan NG, Magee JC
The Journal of Physiology. 2006 Feb 1;570(Pt 3):553-65. doi: 10.1002/cbic.201000254

Although the function of sleep remains elusive, there is compelling evidence to suggest that sleep plays an important role in learning and memory. A number of studies have now shown that sleep deprivation (SD) results in significant impairment of long-term potentiation (LTP) in the hippocampus. In this study, we have attempted to determine the mechanisms responsible for this impairment. After 72 h SD using the multiple-platform technique, we observed a reduction in the whole-cell recorded NMDA/AMPA ratio of CA1 pyramidal cells in response to Schaffer collateral stimulation. This impairment was specific to sleep deprivation as rats placed over a single large platform, which allowed sleep, had a normal NMDA/AMPA ratio. mEPSCs evoked by local application of a high osmolarity solution revealed no differences in the AMPA receptor function. NMDA currents recorded from outside-out patches excised from the distal dendrites of CA1 cells displayed a reduction in amplitude after SD. While there were no alterations in the glutamate sensitivity, channel open probability or the single channel conductance of the receptor, a crosslinking assay demonstrated that the NR1 and NR2A subunits of NMDA receptors were preferentially retained in the cytoplasm after SD, indicating that SD alters NMDAR surface expression. In summary, we have identified a potential mechanism underlying SD-induced LTP impairment. This synaptic alteration may underlie the cognitive deficits seen following sleep deprivation and could represent a target for future intervention studies.

View Publication Page