Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 391-400 of 3920 results
Gonen Lab
01/01/12 | AKAP2 anchors PKA with aquaporin-0 to support ocular lens transparency.
Gold MG, Reichow SL, O’Neill SE, Weisbrod CR, Langeberg LK, Bruce JE, Gonen T, Scott JD
EMBO Molecular Medicine. 2012 Jan;4(1):15-26. doi: 10.1002/emmm.201100184

A decline in ocular lens transparency known as cataract afflicts 90% of individuals by the age 70. Chronic deterioration of lens tissue occurs as a pathophysiological consequence of defective water and nutrient circulation through channel and transporter proteins. A key component is the aquaporin-0 (AQP0) water channel whose permeability is tightly regulated in healthy lenses. Using a variety of cellular and biochemical approaches we have discovered that products of the A-kinase anchoring protein 2 gene (AKAP2/AKAP-KL) form a stable complex with AQP0 to sequester protein kinase A (PKA) with the channel. This permits PKA phosphorylation of serine 235 within a calmodulin (CaM)-binding domain of AQP0. The additional negative charge introduced by phosphoserine 235 perturbs electrostatic interactions between AQP0 and CaM to favour water influx through the channel. In isolated mouse lenses, displacement of PKA from the AKAP2-AQP0 channel complex promotes cortical cataracts as characterized by severe opacities and cellular damage. Thus, anchored PKA modulation of AQP0 is a homeostatic mechanism that must be physically intact to preserve lens transparency.

View Publication Page
04/13/09 | Algebraic approach to recovering topological information in distributed camera networks.
Ahammad P, Lobaton E, Sastry S
ACM / IEEE International Conference on Information Processing in Sensor Networks. 2009 Apr 13:

Camera networks are widely used for tasks such as surveillance, monitoring and tracking. In order to accomplish these tasks, knowledge of localization information such as camera locations and other geometric constraints about the environment (e.g. walls, rooms, and building layout) are typically considered to be essential. However, this information is not always required for many tasks such as estimating the topology of camera network coverage, or coordinate-free object tracking and navigation. In this paper, we propose a simplicial representation (called CN- complex) that can be constructed from discrete local observations from cameras, and utilize this novel representation to recover the topological information of the network coverage. We prove that our representation captures the correct topological information from network coverage for 2.5-D layouts, and demonstrate their utility in simulations as well as a real-world experimental set-up. Our proposed approach is particularly useful in the context of ad-hoc camera networks in indoor/outdoor urban environments with distributed but limited computational power and energy.

View Publication Page
05/15/21 | Algorithms underlying flexible phototaxis in larval zebrafish.
Chen AB, Deb D, Bahl A, Engert F
Journal of Experimental Biology. 2021 May 15;224(10):. doi: 10.1242/jeb.238386

To thrive, organisms must maintain physiological and environmental variables in suitable ranges. Given that these variables undergo constant fluctuations over varying time scales, how do biological control systems maintain control over these values? We explored this question in the context of phototactic behavior in larval zebrafish. We demonstrate that larval zebrafish use phototaxis to maintain environmental luminance at a set point, that the value of this set point fluctuates on a time scale of seconds when environmental luminance changes, and that it is determined by calculating the mean input across both sides of the visual field. These results expand on previous studies of flexible phototaxis in larval zebrafish; they suggest that larval zebrafish exert homeostatic control over the luminance of their surroundings, and that feedback from the surroundings drives allostatic changes to the luminance set point. As such, we describe a novel behavioral algorithm with which larval zebrafish exert control over a sensory variable.

View Publication Page
01/01/10 | Alignment of cryo-electron tomography datasets.
Amat F, Castaño-Diez D, Lawrence A, Moussavi F, Winkler H, Horowitz M
Methods in Enzymology. 2010;482:343-67. doi: 10.1016/S0076-6879(10)82014-2

Data acquisition of cryo-electron tomography (CET) samples described in previous chapters involves relatively imprecise mechanical motions: the tilt series has shifts, rotations, and several other distortions between projections. Alignment is the procedure of correcting for these effects in each image and requires the estimation of a projection model that describes how points from the sample in three-dimensions are projected to generate two-dimensional images. This estimation is enabled by finding corresponding common features between images. This chapter reviews several software packages that perform alignment and reconstruction tasks completely automatically (or with minimal user intervention) in two main scenarios: using gold fiducial markers as high contrast features or using relevant biological structures present in the image (marker-free). In particular, we emphasize the key decision points in the process that users should focus on in order to obtain high-resolution reconstructions.

View Publication Page
Bock Lab
01/01/07 | Alignment of large image series using cubic B-splines tessellation: application to transmission electron microscopy data.
Dauguet J, Bock D, Reid RC, Warfield SK
Medical Image Computing and Computer-Assisted Intervention: MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention. 2007;10:710-7

3D reconstruction from serial 2D microscopy images depends on non-linear alignment of serial sections. For some structures, such as the neuronal circuitry of the brain, very large images at very high resolution are necessary to permit reconstruction. These very large images prevent the direct use of classical registration methods. We propose in this work a method to deal with the non-linear alignment of arbitrarily large 2D images using the finite support properties of cubic B-splines. After initial affine alignment, each large image is split into a grid of smaller overlapping sub-images, which are individually registered using cubic B-splines transformations. Inside the overlapping regions between neighboring sub-images, the coefficients of the knots controlling the B-splines deformations are blended, to create a virtual large grid of knots for the whole image. The sub-images are resampled individually, using the new coefficients, and assembled together into a final large aligned image. We evaluated the method on a series of large transmission electron microscopy images and our results indicate significant improvements compared to both manual and affine alignment.

View Publication Page
10/05/11 | Alk is a transcriptional target of LMO4 and ERα that promotes cocaine sensitization and reward.
Lasek AW, Gesch J, Giorgetti F, Kharazia V, Heberlein U
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2011 Oct 5;31(40):14134-41. doi: 10.1523/JNEUROSCI.3415-11.2011

Previously, we showed that the mouse LIM-domain only 4 (Lmo4) gene, which encodes a protein containing two zinc-finger LIM domains that interact with various DNA-binding transcription factors, attenuates behavioral sensitivity to repeated cocaine administration. Here we show that transcription of anaplastic lymphoma kinase (Alk) is repressed by LMO4 in the striatum and that Alk promotes the development of cocaine sensitization and conditioned place preference, a measure of cocaine reward. Since LMO4 is known to interact with estrogen receptor α (ERα) at the promoters of target genes, we investigated whether Alk expression might be controlled by a similar mechanism. We found that LMO4 and ERα are associated with the Alk promoter by chromatin immunoprecipitation and that Alk is an estrogen-responsive gene in the striatum. Moreover, we show that ERα knock-out mice exhibit enhanced cocaine sensitization and conditioned place preference and an increase in Alk expression in the nucleus accumbens. These data define a novel regulatory network involved in behavioral responses to cocaine. Interestingly, sex differences in several behavioral responses to cocaine in humans and rodents have been described, and estrogen is thought to mediate some of these differences. Our data suggest that estrogen regulation of Alk may be one mechanism responsible for sexually dimorphic responses to cocaine.

View Publication Page
Schreiter LabLooger Lab
03/01/17 | All-optical functional synaptic connectivity mapping in acute brain slices using CaMPARI.
Zolnik TA, Sha F, Johenning F, Schreiter ER, Looger LL, Larkum ME, Sachdev RN
The Journal of Physiology. 2017 Mar 01;595(5):1465-77. doi: 10.1113/JP273116

The calcium-modulated photoactivatable ratiometric integrator CaMPARI (Fosque et al., 2015) facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labeling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and sub-threshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo-like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin-2-expressing long-range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network-wide, tunable, all-optical functional circuit mapping that captures supra- and sub-threshold depolarization. This article is protected by copyright. All rights reserved.

View Publication Page
09/01/23 | All-optical reporting of chloride ion driving force in the nervous system
Joshua S. Selfe , Teresa J. S. Steyn , Eran F. Shorer , Richard J. Burman , Kira M. Düsterwald , Ahmed S. Abdelfattah , Eric R. Schreiter , Sarah E. Newey , Colin J. Akerman , Joseph V. Raimondo
bioRxiv. 2023 Sep 01:. doi: 10.1101/2023.08.30.555464

Ionic driving forces provide the net electromotive force for ion movement across membranes and are therefore a fundamental property of all cells. In the nervous system, chloride driving force (DFCl) determines inhibitory signaling, as fast synaptic inhibition is mediated by chloride-permeable GABAA and glycine receptors. Here we present a new tool for all-Optical Reporting of CHloride Ion Driving force (ORCHID). We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFCl from genetically targeted cell types over a range of timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFCl, reveals novel differences in DFCl between neurons and astrocytes under different network conditions, and affords the first in vivo measurements of intact DFCl in mouse cortical neurons. This work extends our understanding of chloride homeostasis and inhibitory synaptic transmission and establishes a precedent for utilizing all-optical methods to assess ionic driving force.

View Publication Page
11/20/23 | All-optical reporting of inhibitory receptor driving force in the nervous system.
Joshua S. Selfe , Teresa J. S. Steyn , Eran F. Shorer , Richard J. Burman , Kira M. Düsterwald , Ahmed S. Abdelfattah , Eric R. Schreiter , Sarah E. Newey , Colin J. Akerman , Joseph V. Raimondo
bioRxiv. 2023 Nov 20:. doi: 10.1101/2023.08.30.555464

Ionic driving forces provide the net electromotive force for ion movement across receptors, channels, and transporters, and are a fundamental property of all cells. In the brain for example, fast synaptic inhibition is mediated by chloride permeable GABAA receptors, and single-cell intracellular recordings have been the only method for estimating driving forces across these receptors (DFGABAA). Here we present a new tool for quantifying inhibitory receptor driving force named ORCHID: all-Optical Reporting of CHloride Ion Driving force. We demonstrate ORCHID’s ability to provide accurate, high-throughput measurements of resting and dynamic DFGABAA from genetically targeted cell types over multiple timescales. ORCHID confirms theoretical predictions about the biophysical mechanisms that establish DFGABAA, reveals novel differences in DFGABAA between neurons and astrocytes, and affords the first in vivo measurements of intact DFGABAA. This work extends our understanding of inhibitory synaptic transmission and establishes a precedent for all-optical methods to assess ionic driving forces.

View Publication Page
Singer Lab
12/04/18 | Allatostatin-C/AstC-R2 is a novel pathway to modulate the circadian activity pattern in Drosophila.
Díaz MM, Schlichting M, Abruzzi KC, Long X, Rosbash M
Current Biology : CB. 2018 Dec 04;29(1):13-22. doi: 10.1016/j.cub.2018.11.005

Seven neuropeptides are expressed within the Drosophila brain circadian network. Our previous mRNA profiling suggested that Allatostatin-C (AstC) is an eighth neuropeptide and specifically expressed in dorsal clock neurons (DN1s). Our results here show that AstC is, indeed, expressed in DN1s, where it oscillates. AstC is also expressed in two less well-characterized circadian neuronal clusters, the DN3s and lateral-posterior neurons (LPNs). Behavioral experiments indicate that clock-neuron-derived AstC is required to mediate evening locomotor activity under short (winter-like) and long (summer-like) photoperiods. The AstC-Receptor 2 (AstC-R2) is expressed in LNds, the clock neurons that drive evening locomotor activity, and AstC-R2 is required in these neurons to modulate the same short photoperiod evening phenotype. Ex vivo calcium imaging indicates that AstC directly inhibits a single LNd. The results suggest that a novel AstC/AstC-R2 signaling pathway, from dorsal circadian neurons to an LNd, regulates the evening phase in Drosophila.

View Publication Page