Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

161 Publications

Showing 101-110 of 161 results
Your Criteria:
    02/01/22 | Organization of translating secretome mRNAS on endoplasmic reticulum
    Choi H, Liao Y, Yoon YJ, Grimm J, Lavis LD, Singer RH, Lippincott-Schwartz J
    Biophysical Journal. 2022 Feb 01;121(3):33a. doi: 10.1016/j.bpj.2021.11.2550

    The endoplasmic reticulum (ER) has a complex morphology comprised of stacked sheets, tubules, and three-way junctions, which together function as a platform for protein synthesis of membrane and secretory proteins. Specific ER subdomains are thought to be spatially organized to enable protein synthesis activity, but precisely where these domains are localized is unclear, especially relative to the plethora of organelle interactions taking place on the ER. Here, we use single-molecule tracking of ribosomes and mRNA in combination with simultaneous imaging of ER to assess the sites of membrane protein synthesis on the ER. We found that ribosomes were widely distributed throughout different ER morphologies, but the synthesis of membrane proteins (including Type I, II, and multi-spanning) and an ER luminal protein (Calreticulin) occurred primarily at three-way junctions. Lunapark played a key role in stabilizing transmembrane protein mRNA at three-way junctions. We additionally found that translating mRNAs coding for transmembrane proteins are in the vicinity of lysosomes and translate through a cap-independent but eIF2-dependent mechanism. These results support the idea that discrete ER subdomains co-exist with lysosomes to support specific types of protein synthesis activities, with ER-lysosome interactions playing an important role in the translation of secretome mRNAs.

    View Publication Page
    05/31/24 | Periodic ER-plasma membrane junctions support long-range Ca2+ signal integration in dendrites
    Benedetti L, Fan R, Weigel AV, Moore AS, Houlihan PR, Kittisopikul M, Park G, Petruncio A, Hubbard PM, Pang S, Xu CS, Hess HF, Saalfeld S, Rangaraju V, Clapham DE, De Camilli P, Ryan TA, Lippincott-Schwartz J
    bioRxiv. 2024 May 31:. doi: 10.1101/2024.05.27.596121

    Neuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at \~1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca2+ channels and ER Ca2+-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca2+ homeostasis, and local activation of the Ca2+/calmodulin-dependent protein kinase II. Local spine stimulation activates the Ca2+ modulatory machinery facilitating voltage-independent signal transmission and ryanodine receptor-dependent Ca2+ release at ER-PM junctions over 20 μm away. Thus, interconnected ER-PM junctions support signal propagation and Ca2+ release from the spine-adjacent ER. The capacity of this subcellular architecture to modify both local and distant membrane-proximal biochemistry potentially contributes to dendritic computations.HighlightsPeriodic ER-PM junctions tile neuronal dendritic plasma membrane in rodent and fly.ER-PM junctions are populated by ER tethering and Ca2+ release and influx machinery.ER-PM junctions act as sites for local activation of CaMKII.Local spine activation drives Ca2+ release from RyRs at ER-PM junctions over 20 μm.

    View Publication Page
    12/08/23 | Permanent deconstruction of intracellular primary cilia in differentiating granule cell neurons.
    Ott CM, Constable S, Nguyen TM, White K, Lee WA, Lippincott-Schwartz J, Mukhopadhyay S
    bioRxiv. 2023 Dec 08:. doi: 10.1101/2023.12.07.565988

    Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While essential during early developmental stages, the fate of granule cell cilia is unknown. Here, we provide nanoscopic resolution of ciliary dynamics by studying developmental changes in granule cell cilia using large-scale electron microscopy volumes and immunostaining of mouse cerebella. We found that many granule cell primary cilia were intracellular and concealed from the external environment. Cilia were disassembed in differentiating granule cell neurons in a process we call cilia deconstruction that was distinct from pre-mitotic cilia resorption in proliferating progenitors. In differentiating granule cells, ciliary loss involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Cilia did not reform from the docked centrioles, rather, in adult mice granule cell neurons remained unciliated. Many neurons in other brain regions require cilia to regulate function and connectivity. In contrast, our results show that granule cell progenitors had concealed cilia that underwent deconstruction potentially to prevent mitogenic hedgehog responsiveness. The ciliary deconstruction mechanism we describe could be paradigmatic of cilia removal during differentiation in other tissues.

    View Publication Page
    02/20/23 | Phase separation of Hippo signalling complexes.
    Bonello TT, Cai D, Fletcher GC, Wiengartner K, Pengilly V, Lange KS, Liu Z, Lippincott-Schwartz J, Kavran JM, Thompson BJ
    EMBO Journal. 2023 Feb 20;42(6):e112863. doi: 10.15252/embj.2022112863

    The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.

    View Publication Page
    12/18/19 | Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression.
    Cai D, Feliciano D, Dong P, Flores E, Gruebele M, Porat-Shliom N, Sukenik S, Liu Z, Lippincott-Schwartz J
    Nature Cell Biology. 2019 Dec;21(12):1578-1589. doi: 10.1038/s41556-019-0433-z

    Yes-associated protein (YAP) is a transcriptional co-activator that regulates cell proliferation and survival by binding to a select set of enhancers for target gene activation. How YAP coordinates these transcriptional responses is unknown. Here, we demonstrate that YAP forms liquid-like condensates in the nucleus. Formed within seconds of hyperosmotic stress, YAP condensates compartmentalized the YAP transcription factor TEAD1 and other YAP-related co-activators, including TAZ, and subsequently induced the transcription of YAP-specific proliferation genes. Super-resolution imaging using assay for transposase-accessible chromatin with photoactivated localization microscopy revealed that the YAP nuclear condensates were areas enriched in accessible chromatin domains organized as super-enhancers. Initially devoid of RNA polymerase II, the accessible chromatin domains later acquired RNA polymerase II, transcribing RNA. The removal of the intrinsically-disordered YAP transcription activation domain prevented the formation of YAP condensates and diminished downstream YAP signalling. Thus, dynamic changes in genome organization and gene activation during YAP reprogramming is mediated by liquid-liquid phase separation.

    View Publication Page
    01/01/15 | Photocontrollable fluorescent proteins for superresolution imaging.
    Shcherbakova DM, Sengupta P, Lippincott-Schwartz J, Verkhusha VV
    Annual review of biophysics. 2014;43:303-29. doi: 10.1146/annurev-biophys-051013-022836

    Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization-based and nonlinear ensemble-based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine.

    View Publication Page
    11/08/14 | Photohighlighting approaches to access membrane dynamics of the Golgi apparatus.
    Sengupta P, Lippincott-Schwartz J
    Methods in cell biology. 2013;118:217-34. doi: 10.1016/B978-0-12-417164-0.00013-6

    By providing quantitative, visual data of live cells, fluorescent protein-based microscopy techniques are furnishing novel insights into the complexities of membrane trafficking pathways and organelle dynamics. In this chapter, we describe experimental protocols employing fluorescent protein-based photohighlighting techniques to quantify protein movement into and out of the Golgi apparatus, an organelle that serves as the central sorting and processing station of the secretory pathway. The methods allow kinetic characteristics of Golgi-associated protein trafficking to be deciphered, which can help clarify how the Golgi maintains itself as a steady-state structure despite a continuous flux of secretory cargo passing into and out of this organelle. The guidelines presented in this chapter can also be applied to examine the dynamics of other intracellular organelle systems, elucidating mechanisms for how proteins are maintained in specific organelles and/or circulated to other destinations within the cell.

    View Publication Page
    10/30/12 | Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging.
    Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J
    Proceedings of the National Academy of Sciences of the United States of America. 2012 Oct 30;109(44):E2989-97. doi: 10.1073/pnas.1211753109

    The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.

    View Publication Page
    10/30/12 | Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging.
    Renz M, Daniels BR, Vámosi G, Arias IM, Lippincott-Schwartz J
    Proceedings of the National Academy of Sciences of the United States of America. 2012 Oct 30;109(44):E2989-97. doi: 10.1073/pnas.1211753109

    The stoichiometry and composition of membrane protein receptors are critical to their function. However, the inability to assess receptor subunit stoichiometry in situ has hampered efforts to relate receptor structures to functional states. Here, we address this problem for the asialoglycoprotein receptor using ensemble FRET imaging, analytical modeling, and single-molecule counting with photoactivated localization microscopy (PALM). We show that the two subunits of asialoglycoprotein receptor [rat hepatic lectin 1 (RHL1) and RHL2] can assemble into both homo- and hetero-oligomeric complexes, displaying three forms with distinct ligand specificities that coexist on the plasma membrane: higher-order homo-oligomers of RHL1, higher-order hetero-oligomers of RHL1 and RHL2 with two-to-one stoichiometry, and the homo-dimer RHL2 with little tendency to further homo-oligomerize. Levels of these complexes can be modulated in the plasma membrane by exogenous ligands. Thus, even a simple two-subunit receptor can exhibit remarkable plasticity in structure, and consequently function, underscoring the importance of deciphering oligomerization in single cells at the single-molecule level.

    View Publication Page
    02/15/11 | Principles and current strategies for targeting autophagy for cancer treatment.
    Amaravadi RK, Lippincott-Schwartz J, Yin X, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E
    Clinical cancer research : an official journal of the American Association for Cancer Research. 2011 Feb 15;17(4):654-66. doi: 10.1158/1078-0432.CCR-10-2634

    Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy.

    View Publication Page