Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 2531-2540 of 3924 results
05/19/14 | Nonmuscle myosin II isoforms coassemble in living cells.
Beach JR, Shao L, Remmert K, Li D, Betzig E, Hammer JA
Current Biology. 2014 May 19;24(10):1160-6. doi: 10.1016/j.cub.2014.03.071

Nonmuscle myosin II (NM II) powers myriad developmental and cellular processes, including embryogenesis, cell migration, and cytokinesis [1]. To exert its functions, monomers of NM II assemble into bipolar filaments that produce a contractile force on the actin cytoskeleton. Mammalian cells express up to three isoforms of NM II (NM IIA, IIB, and IIC), each of which possesses distinct biophysical properties and supports unique as well as redundant cellular functions [2-8]. Despite previous efforts [9-13], it remains unclear whether NM II isoforms assemble in living cells to produce mixed (heterotypic) bipolar filaments or whether filaments consist entirely of a single isoform (homotypic). We addressed this question using fluorescently tagged versions of NM IIA, IIB, and IIC, isoform-specific immunostaining of the endogenous proteins, and two-color total internal reflection fluorescence structured-illumination microscopy, or TIRF-SIM, to visualize individual myosin II bipolar filaments inside cells. We show that NM II isoforms coassemble into heterotypic filaments in a variety of settings, including various types of stress fibers, individual filaments throughout the cell, and the contractile ring. We also show that the differential distribution of NM IIA and NM IIB typically seen in confocal micrographs of well-polarized cells is reflected in the composition of individual bipolar filaments. Interestingly, this differential distribution is less pronounced in freshly spread cells, arguing for the existence of a sorting mechanism acting over time. Together, our work argues that individual NM II isoforms are potentially performing both isoform-specific and isoform-redundant functions while coassembled with other NM II isoforms.

View Publication Page
05/23/24 | Norepinephrine changes behavioral state via astroglial purinergic signaling
Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB
bioRxiv. 2024 May 23:. doi: 10.1101/2024.05.23.595576

Both neurons and glia communicate via diffusible neuromodulatory substances, but the substrates of computation in such neuromodulatory networks are unclear. During behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine drives fast excitation and delayed inhibition of behavior and circuit activity. We find that the inhibitory arm of this feedforward motif is implemented by astroglial purinergic signaling. Neuromodulator imaging, behavioral pharmacology, and perturbations of neurons and astroglia reveal that norepinephrine triggers astroglial release of adenosine triphosphate, extracellular conversion into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. This work, along with a companion piece by Lefton and colleagues demonstrating an analogous pathway mediating the effect of norepinephrine on synaptic connectivity in mice, identifies a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in norepinephrine-mediated behavioral and brain state transitions.

View Publication Page
Magee Lab
04/15/03 | Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons.
Frick A, Magee J, Koester HJ, Migliore M, Johnston D
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2003 Apr 15;23(8):3243-50. doi: 10.1002/cbic.201000254

Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive approximately 80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we found that the properties of the oblique dendrites differ markedly from those of the main dendrites. These different properties tend to equalize the Ca2+ rise from single action potentials as they backpropagate into the oblique dendrites from the main trunk. Evidence suggests that this normalization of Ca2+ signals results from a higher density of a transient, A-type K+ current [I(K(A))] in the oblique versus the main dendrites. The higher density of I(K(A)) may have important implications for our understanding of synaptic integration and plasticity in these structures.

View Publication Page
06/09/23 | Not everything, not everywhere, not all at once: a study of brain-wide encoding of movement
Ziyue Aiden Wang , Susu Chen , Yi Liu , Dave Liu , Karel Svoboda , Nuo Li , Shaul Druckmann
bioRxiv. 2023 Jun 09:. doi: 10.1101/2023.06.08.544257

Activity related to movement is found throughout sensory and motor regions of the brain. However, it remains unclear how movement-related activity is distributed across the brain and whether systematic differences exist between brain areas. Here, we analyzed movement related activity in brain-wide recordings containing more than 50,000 neurons in mice performing a decision-making task. Using multiple techniques, from markers to deep neural networks, we find that movement-related signals were pervasive across the brain, but systematically differed across areas. Movement-related activity was stronger in areas closer to the motor or sensory periphery. Delineating activity in terms of sensory- and motor-related components revealed finer scale structures of their encodings within brain areas. We further identified activity modulation that correlates with decision-making and uninstructed movement. Our work charts out a largescale map of movement encoding and provides a roadmap for dissecting different forms of movement and decision-making related encoding across multi-regional neural circuits.

View Publication Page
10/05/22 | Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas.
Avitan L, Stringer C
Neuron. 2022 Oct 05;110(19):3064. doi: 10.1016/j.neuron.2022.06.019

Sensory areas are spontaneously active in the absence of sensory stimuli. This spontaneous activity has long been studied; however, its functional role remains largely unknown. Recent advances in technology, allowing large-scale neural recordings in the awake and behaving animal, have transformed our understanding of spontaneous activity. Studies using these recordings have discovered high-dimensional spontaneous activity patterns, correlation between spontaneous activity and behavior, and dissimilarity between spontaneous and sensory-driven activity patterns. These findings are supported by evidence from developing animals, where a transition toward these characteristics is observed as the circuit matures, as well as by evidence from mature animals across species. These newly revealed characteristics call for the formulation of a new role for spontaneous activity in neural sensory computation.

View Publication Page
08/19/15 | Novel behavioral paradigm reveals lower temporal limits on mouse olfactory decisions.
Resulaj A, Rinberg D
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. 2015 Aug 19;35(33):11667-73. doi: 10.1523/JNEUROSCI.4693-14.2015

UNLABELLED: Temporal limits on perceptual decisions set strict boundaries on the possible underlying neural computations. How odor information is encoded in the olfactory system is still poorly understood. Here, we sought to define the limit on the speed of olfactory processing. To achieve this, we trained mice to discriminate different odor concentrations in a novel behavioral setup with precise odor delivery synchronized to the sniffing cycle. Mice reported their choice by moving a horizontal treadmill with their front limbs. We found that mice reported discriminations of 75% accuracy in 70-90 ms after odor inhalation. For a low concentration and nontrigeminal odorant, this time was 90-140 ms, showing that mice process odor information rapidly even in the absence of trigeminal stimulation. These response times establish, after accounting for odor transduction and motor delays, that olfactory processing can take tens of milliseconds. This study puts a strong limit on the underlying neural computations and suggests that the action potentials forming the neural basis for these decisions are fired in a few tens of milliseconds.

SIGNIFICANCE STATEMENT: Understanding how sensory information is processed requires different approaches that span multiple levels of investigation from genes to neurons to behavior. Limits on behavioral performance constrain the possible neural mechanisms responsible for specific computations. Using a novel behavioral paradigm, we established that mice can make decisions about odor intensity surprisingly fast. After accounting for sensory and motor delays, the limit on some olfactory neural computations can be as low as a few tens of milliseconds, which suggests that only the first action potentials across a population of neurons contribute to these computations.

View Publication Page
10/17/14 | Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno H, Sakurai T, Namiki S, Mitsuhashi H, Kanzaki R
Biosensors & Bioelectronics. 2014 Oct 17;65C:287-294. doi: 10.1016/j.bios.2014.10.026

Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management.

View Publication Page
03/01/19 | Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder.
Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP
Mol Neuropsychiatry. 2019 Mar 0;5(1):13-27. doi: 10.1159/000495658

Mitochondrial dysfunction has been associated with schizophrenia (SZ) and bipolar disorder (BD). This review examines recent publications and novel associations between mitochondrial genes and SZ and BD. Associations of nuclear-encoded mitochondrial variants with SZ were found using gene- and pathway-based approaches. Two control region mitochondrial DNA (mtDNA) SNPs, T16519C and T195C, both showed an association with SZ and BD. A review of 4 studies of A15218G located in the cytochrome B oxidase gene (CYTB, SZ = 11,311, control = 35,735) shows a moderate association with SZ ( = 2.15E-03). Another mtDNA allele A12308G was nominally associated with psychosis in BD type I subjects and SZ. The first published study testing the epistatic interaction between nuclear-encoded and mitochondria-encoded genes demonstrated evidence for potential interactions between mtDNA and the nuclear genome for BD. A similar analysis for the risk of SZ revealed significant joint effects (34 nuclear-mitochondria SNP pairs with joint effect ≤ 5E-07) and significant enrichment of projection neurons. The mitochondria-encoded gene CYTB was found in both the epistatic interactions for SZ and BD and the single SNP association of SZ. Future efforts considering population stratification and polygenic risk scores will test the role of mitochondrial variants in psychiatric disorders.

View Publication Page
09/14/20 | Novel fluorescent ligands enable single-molecule localization microscopy of the dopamine transporter.
Guthrie D, Klein Herenbrink C, Lycas M, Ku T, Bonifazi A, DeVree B, Mathiasen S, Javitch J, Grimm JB, Lavis LD, Gether U, Newman AH
ACS Chemical Neuroscience. 2020 Sep 14:. doi: 10.1021/acschemneuro.0c00397

The dopamine transporter (DAT) is critical for spatiotemporal control of dopaminergic neurotransmission and the target for therapeutic agents, including ADHD medications, and abused substances, such as cocaine. Here, we develop new fluorescently labeled ligands that bind DAT with high affinity and enable single-molecule detection of the transporter. The cocaine analogue MFZ2-12 (1) was conjugated to novel rhodamine-based Janelia Fluorophores (JF549 and JF646). High affinity binding of the resulting ligands to DAT was demonstrated by potent inhibition of [3H]dopamine uptake in DAT transfected CAD cells and by competition radioligand binding experiments on rat striatal membranes. Visualization of binding was substantiated by confocal or TIRF microscopy revealing selective binding of the analogues to DAT transfected CAD cells. Single particle tracking experiments were performed with JF549-conjugated DG3-80 (3) and JF646-conjugated DG4-91 (4) on DAT transfected CAD cells enabling quantification and categorization of the dynamic behavior of DAT into four distinct motion classes (immobile, confined, Brownian, and directed). Finally, we show that the ligands can be used in direct stochastic optical reconstruction microscopy (dSTORM) experiments permitting further analyses of DAT distribution on the nanoscale. In summary, these novel fluorescent ligands are promising new tools for studying DAT localization and regulation with single-molecule resolution.

View Publication Page
Tjian Lab
01/10/07 | Novel TRF1/BRF target genes revealed by genome-wide analysis of Drosophila Pol III transcription.
Isogai Y, Takada S, Tjian R, Kele\c s S
The EMBO Journal. 2007 Jan 10;26(1):79-89. doi: 10.1073/pnas.1100640108

Metazoans have evolved multiple paralogues of the TATA binding protein (TBP), adding another tunable level of gene control at core promoters. While TBP-related factor 1 (TRF1) shares extensive homology with TBP and can direct both Pol II and Pol III transcription in vitro, TRF1 target sites in vivo have remained elusive. Here, we report the genome-wide identification of TRF1-binding sites using high-resolution genome tiling microarrays. We found 354 TRF1-binding sites genome-wide with approximately 78% of these sites displaying colocalization with BRF. Strikingly, the majority of TRF1 target genes are Pol III-dependent small noncoding RNAs such as tRNAs and small nonmessenger RNAs. We provide direct evidence that the TRF1/BRF complex is functionally required for the activity of two novel TRF1 targets (7SL RNA and small nucleolar RNAs). Our studies suggest that unlike most other eukaryotic organisms that rely on TBP for Pol III transcription, in Drosophila and possibly other insects the alternative TRF1/BRF complex appears responsible for the initiation of all known classes of Pol III transcription.

View Publication Page