Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 2881-2890 of 3924 results
01/25/16 | Real-time three-dimensional cell segmentation in large-scale microscopy data of developing embryos.
Stegmaier J, Amat F, Lemon WC, McDole K, Wan Y, Teodoro G, Mikut R, Keller PJ
Developmental Cell. 2016 Jan 25;36(2):225-40. doi: 10.1016/j.devcel.2015.12.028

We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55–330 times faster and 2–5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS.

View Publication Page
12/01/22 | Recent insights into mammalian natural and synthetic ex utero embryogenesis
Bernardo Oldak , Alejandro Aguilera-Castrejon , Jacob H Hanna
Current Opinion in Genetics & Development. 12/2022;77:101988. doi: https://doi.org/10.1016/j.gde.2022.101988

Research on early postimplantation mammalian development has been limited by the small size and intrauterine confinement of the developing embryos. Owing to the inability to observe and manipulate living embryos at these stages in utero, the establishment of robust ex utero embryo-culture systems that capture prolonged periods of mouse development has been an important research goal. In the last few years, these methods have been significantly improved by the optimization and enhancement of in vitro culture systems sustaining embryo development during peri-implantation stages for several species, and more recently, proper growth of natural mouse embryos from pregastrulation to late organogenesis stages and of embryonic stem cell (ES)-derived synthetic embryo models until early organogenesis stages. Here, we discuss the most recent ex utero embryo-culture systems established to date for rodents, nonhuman primates, and humans. We emphasize their technical aspects and developmental timeframe and provide insights into the new opportunities that these methods will contribute to the study of natural and synthetic mammalian embryogenesis and the stem-cell field.

View Publication Page
Gonen Lab
08/01/12 | Recent progress in membrane protein structures and investigation methods.
Gonen T, Waksman G
Current Opinion in Structural Biology. 2012 Aug;22(4):467-8. doi: 10.1016/j.sbi.2012.07.002
07/26/17 | Recent progress in the 3D reconstruction of Drosophila neural circuits.
Shinomiya K, Ito M
Decoding Neural Circuit Structure and Function:63-89. doi: 10.1007/978-3-319-57363-2_3

The brain of fruit fly Drosophila melanogaster has been used as a model system for functional analysis of neuronal circuits, including connectomics research, due to its modest size (~700 μm) and availability of abundant molecular genetics tools for visualizing neurons. Three-dimensional (3D) reconstruction of high-resolution images of neurons or circuits visualized with appropriate methods is a critical step for obtaining information such as morphology and connectivity patterns of neuronal circuits. In this chapter, we introduce methods for generating 3D reconstructed images with data acquired from confocal laser scanning microscopy (CLSM) or electron microscopy (EM) to analyze neuronal circuits found in the central nervous system (CNS) of the fruit fly. Comparisons of different algorithms and strategies for reconstructing neuronal circuits, using actual studies as references, will be discussed within this chapter.

View Publication Page
Grigorieff Lab
06/01/11 | Recent progress in understanding Alzheimer’s β-amyloid structures.
Fändrich M, Schmidt M, Grigorieff N
Trends in Biochemical Sciences. 2011 Jun;36(6):338-45. doi: 10.1016/j.tibs.2011.02.002

The formation of amyloid fibrils, protofibrils and oligomers from the β-amyloid (Aβ) peptide represents a hallmark of Alzheimer’s disease. Aβ-peptide-derived assemblies might be crucial for disease onset, but determining their atomic structures has proven to be a major challenge. Progress over the past 5 years has yielded substantial new data obtained with improved methodologies including electron cryo-microscopy and NMR. It is now possible to resolve the global fibril topology and the cross-β sheet organization within protofilaments, and to identify residues that are crucial for stabilizing secondary structural elements and peptide conformations within specific assemblies. These data have significantly enhanced our understanding of the mechanism of Aβ aggregation and have illuminated the possible relevance of specific conformers for neurodegenerative pathologies.

View Publication Page
Looger Lab
07/16/14 | Receptive field properties of bipolar cell axon terminals in the direction-selective sublaminas of the mouse retina.
Chen M, Lee S, Park SJ, Looger LL, Zhou ZJ
Journal of Neurophysiology. 2014 Jul 16;112(8):1950-62. doi: 10.1152/jn.00283.2014

Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field property and the synaptic connectivity of the axon terminals of various BC types is required in order to understand the role of axonal computation by BCs. The present study tested the essential assumptions of the presynaptic model of direction selectivity at axon terminals of three functionally distinct BC types that ramify in the direction-selective strata of the mouse retina. Results from two-photon Ca2+ imaging, optogenetic stimulation, and dual patch-clamp recording demonstrated that (1) CB5 cells do not receive fast GABAergic synaptic feedback from starburst amacrine cells (SACs), (2) light-evoked and spontaneous Ca2+ responses are well coordinated among various local regions of CB5 axon terminals, (3) CB5 axon terminals are not directionally selective, (4) CB5 cells consist of two novel functional subtypes with distinct receptive field structures, (5) CB7 cells provide direct excitatory synaptic inputs to, but receive no direct GABAergic synaptic feedback from SACs, and (6) CB7 axon terminals are not directionally selective either. These findings help to simplify models of direction selectivity by ruling out complex computation at BC terminals. They also show that CB5 comprises two functional subclasses of BCs.

View Publication Page
11/12/08 | Receptors, circuits, and behaviors: new directions in chemical senses.
Katz DB, Matsunami H, Rinberg D, Scott K, Wachowiak M, Wilson RI
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Nov 12;28(46):11802-5. doi: 10.1523/JNEUROSCI.3613-08.2008

The chemical senses, smell and taste, are the most poorly understood sensory modalities. In recent years, however, the field of chemosensation has benefited from new methods and technical innovations that have accelerated the rate of scientific progress. For example, enormous advances have been made in identifying olfactory and gustatory receptor genes and mapping their expression patterns. Genetic tools now permit us to monitor and control neural activity in vivo with unprecedented precision. New imaging techniques allow us to watch neural activity patterns unfold in real time. Finally, improved hardware and software enable multineuron electrophysiological recordings on an expanded scale. These innovations have enabled some fresh approaches to classic problems in chemosensation.

View Publication Page
05/01/24 | Recognising the importance and impact of Imaging Scientists: Global guidelines for establishing career paths within core facilities
Wright GD, Thompson KA, Reis Y, Bischof J, Hockberger PE, Itano MS, Yen L, Adelodun ST, Bialy N, Brown CM, Chaabane L, Chew T, Chitty AI, Cordelières FP, De Niz M, Ellenberg J, Engelbrecht L, Fabian-Morales E, Fazeli E, Fernandez-Rodriguez J, Ferrando-May E, Fletcher G, Galloway GJ, Guerrero A, Guimarães JM, Jacobs CA, Jayasinghe S, Kable E, Kitten GT, Komoto S, Ma X, Marques JA, Millis BA, Miranda K, JohnO'Toole P, Olatunji SY, Paina F, Pollak CN, Prats C, Pylvänäinen JW, Rahmoon MA, Reiche MA, Riches JD, Rossi AH, Salamero J, Thiriet C, Terjung S, Vasconcelos AD, Keppler A
J Microsc. 2024 May 01:. doi: 10.1111/jmi.13307

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.

View Publication Page
06/01/05 | Recombinant approaches to IgG-like bispecific antibodies.
Marvin JS, Zhu Z
Acta Pharmacologica Sinica. 2005 Jun;26(6):649-58. doi: 10.1111/j.1745-7254.2005.00119.x

One of the major obstacles in the development of bispecific antibodies (BsAb) has been the difficulty of producing the materials in sufficient quality and quantity by traditional technologies, such as the hybrid hybridoma and chemical conjugation methods. In contrast to the rapid and significant progress in the development of recombinant BsAb fragments (such as diabody and tandem single chain Fv), the successful design and production of full length IgG-like BsAb has been limited. Compared to smaller fragments, IgG-like BsAb have long serum half-life and are capable of supporting secondary immune functions, such as antibody-dependent cellular cytotoxicity and complement-mediated cytotoxicity. The development of IgG-like BsAb as therapeutic agents will depend heavily on our research progress in the design of recombinant BsAb constructs (or formats) and production efficiency. This review will focus on recent advances in various recombinant approaches to the engineering and production of IgG-like BsAb.

View Publication Page
05/14/04 | Recombination of human mitochondrial DNA.
Kraytsberg Y, Schwartz M, Brown TA, Ebralidse K, Kunz WS, Clayton DA, Vissing J, Khrapko K
Science. 2004 May 14;304(5673):981. doi: 10.1126/science.1096342