Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3924 Publications

Showing 3191-3200 of 3924 results
07/27/08 | Standardized atlas of the brain of the desert locust, Schistocerca gregaria.
Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U
Cell and Tissue Research. 2008 Jul 27;333(1):125-45. doi: 10.1007/s00441-008-0620-x

In order to understand the connectivity of neuronal networks, their constituent neurons should ideally be studied in a common framework. Since morphological data from physiologically characterized and stained neurons usually arise from different individual brains, this can only be performed in a virtual standardized brain that compensates for interindividual variability. The desert locust, Schistocerca gregaria, is an insect species used widely for the analysis of olfactory and visual signal processing, endocrine functions, and neural networks controlling motor output. To provide a common multi-user platform for neural circuit analysis in the brain of this species, we have generated a standardized three-dimensional brain of this locust. Serial confocal images from whole-mount locust brains were used to reconstruct 34 neuropil areas in ten brains. For standardization, we compared two different methods: an iterative shape-averaging (ISA) procedure by using affine transformations followed by iterative nonrigid registrations, and the Virtual Insect Brain (VIB) protocol by using global and local rigid transformations followed by local nonrigid transformations. Both methods generated a standard brain, but for different applications. Whereas the VIB technique was designed to visualize anatomical variability between the input brains, the purpose of the ISA method was the opposite, i.e., to remove this variability. A novel individually labeled neuron, connecting the lobula to the midbrain and deutocerebrum, has been registered into the ISA atlas and demonstrates its usefulness and accuracy for future analysis of neural networks. The locust standard brain is accessible at http://www.3d-insectbrain.com .

View Publication Page
09/27/10 | Starved cells use mitochondria for autophagosome biogenesis.
Rambold AS, Lippincott-Schwartz J
Cell cycle (Georgetown, Tex.). 2010 Sep 15;9(18):3633-4. doi: 10.4161/cc.9.18.13170
Branson LabCard Lab
07/01/19 | State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila.
Ache JM, Namiki S, Lee A, Branson K, Card GM
Nature Neuroscience. 2019 Jul 01;22(7):1132-1139. doi: 10.1038/s41593-019-0413-4

An approaching predator and self-motion toward an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other probably receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.

View Publication Page
Magee Lab
02/15/06 | State-dependent dendritic computation in hippocampal CA1 pyramidal neurons.
Gasparini S, Magee JC
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2006 Feb 15;26(7):2088-100. doi: 10.1002/cbic.201000254

Depending on the behavioral state, hippocampal CA1 pyramidal neurons receive very distinct patterns of synaptic input and likewise produce very different output patterns. We have used simultaneous dendritic and somatic recordings and multisite glutamate uncaging to investigate the relationship between synaptic input pattern, the form of dendritic integration, and action potential output in CA1 neurons. We found that when synaptic input arrives asynchronously or highly distributed in space, the dendritic arbor performs a linear integration that allows the action potential rate and timing to vary as a function of the quantity of the input. In contrast, when synaptic input arrives synchronously and spatially clustered, the dendritic compartment receiving the clustered input produces a highly nonlinear integration that leads to an action potential output that is extraordinarily precise and invariant. We also present evidence that both of these forms of information processing may be independently engaged during the two distinct behavioral states of the hippocampus such that individual CA1 pyramidal neurons could perform two different state-dependent computations: input strength encoding during theta states and feature detection during sharp waves.

View Publication Page
02/04/15 | State-dependent population coding in primary auditory cortex.
Pachitariu M, Lyamzin DR, Sahani M, Lesica NA
The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2015 Feb 04;35(5):2058-73. doi: 10.1523/JNEUROSCI.3318-14.2015

Sensory function is mediated by interactions between external stimuli and intrinsic cortical dynamics that are evident in the modulation of evoked responses by cortical state. A number of recent studies across different modalities have demonstrated that the patterns of activity in neuronal populations can vary strongly between synchronized and desynchronized cortical states, i.e., in the presence or absence of intrinsically generated up and down states. Here we investigated the impact of cortical state on the population coding of tones and speech in the primary auditory cortex (A1) of gerbils, and found that responses were qualitatively different in synchronized and desynchronized cortical states. Activity in synchronized A1 was only weakly modulated by sensory input, and the spike patterns evoked by tones and speech were unreliable and constrained to a small range of patterns. In contrast, responses to tones and speech in desynchronized A1 were temporally precise and reliable across trials, and different speech tokens evoked diverse spike patterns with extremely weak noise correlations, allowing responses to be decoded with nearly perfect accuracy. Restricting the analysis of synchronized A1 to activity within up states yielded similar results, suggesting that up states are not equivalent to brief periods of desynchronization. These findings demonstrate that the representational capacity of A1 depends strongly on cortical state, and suggest that cortical state should be considered as an explicit variable in all studies of sensory processing.

View Publication Page
03/01/04 | Statistical clustering applied to adaptive matched field processing
BH Tracey , NL Lee , SC Turaga
Proceedings of Advanced Sensor Array Processing (ASAP) Workshop, March 2004:
05/05/24 | Statistical signature of subtle behavioural changes in large-scale behavioural assays
Alexandre Blanc , François Laurent , Alex Barbier–Chebbah , Benjamin T. Cocanougher , Benjamin M.W. Jones , Peter Hague , Marta Zlatic , Rayan Chikhi , Christian L. Vestergaard , Tihana Jovanic , Jean-Baptiste Masson , Chloé Barré
bioRxiv. 2024 May 5:. doi: 10.1101/2024.05.03.591825

The central nervous system can generate various behaviours, including motor responses, which we can observe through video recordings. Recent advancements in genetics, automated behavioural acquisition at scale, and machine learning enable us to link behaviours to their underlying neural mechanisms causally. Moreover, in some animals, such as the Drosophila larva, this mapping is possible at unprecedented scales of millions of animals and single neurons, allowing us to identify the neural circuits generating particular behaviours.These high-throughput screening efforts are invaluable, linking the activation or suppression of specific neurons to behavioural patterns in millions of animals. This provides a rich dataset to explore how diverse nervous system responses can be to the same stimuli. However, challenges remain in identifying subtle behaviours from these large datasets, including immediate and delayed responses to neural activation or suppression, and understanding these behaviours on a large scale. We introduce several statistically robust methods for analyzing behavioural data in response to these challenges: 1) A generative physical model that regularizes the inference of larval shapes across the entire dataset. 2) An unsupervised kernel-based method for statistical testing in learned behavioural spaces aimed at detecting subtle deviations in behaviour. 3) A generative model for larval behavioural sequences, providing a benchmark for identifying complex behavioural changes. 4) A comprehensive analysis technique using suffix trees to categorize genetic lines into clusters based on common action sequences. We showcase these methodologies through a behavioural screen focused on responses to an air puff, analyzing data from 280,716 larvae across 568 genetic lines.Author Summary There is a significant gap in understanding between the architecture of neural circuits and the mechanisms of action selection and behaviour generation.Drosophila larvae have emerged as an ideal platform for simultaneously probing behaviour and the underlying neuronal computation [1]. Modern genetic tools allow efficient activation or silencing of individual and small groups of neurons. Combining these techniques with standardized stimuli over thousands of individuals makes it possible to relate neurons to behaviour causally. However, extracting these relationships from massive and noisy recordings requires the development of new statistically robust approaches. We introduce a suite of statistical methods that utilize individual behavioural data and the overarching structure of the behavioural screen to deduce subtle behavioural changes from raw data. Given our study’s extensive number of larvae, addressing and preempting potential challenges in body shape recognition is critical for enhancing behaviour detection. To this end, we have adopted a physics-informed inference model. Our first group of techniques enables robust statistical analysis within a learned continuous behaviour latent space, facilitating the detection of subtle behavioural shifts relative to reference genetic lines. A second array of methods probes for subtle variations in action sequences by comparing them to a bespoke generative model. Together, these strategies have enabled us to construct representations of behavioural patterns specific to a lineage and identify a roster of ”hit” neurons with the potential to influence behaviour subtly.

View Publication Page
06/17/24 | Steering From the Rear: Coordination of Central Pattern Generators Underlying Navigation by Ascending Interneurons
Jonaitis J, Hibbard KL, Layte KM, Hiramoto A, Cardona A, Truman JW, Nose A, Zwart MF, Pulver SR
bioRxiv. 2024 Jun 17:. doi: 10.1101/2024.06.17.598162

Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system and project to anterior higher-order regions influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated CNS preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.

View Publication Page
04/10/17 | Stem cell-intrinsic, seven-up-triggered temporal factor gradients diversify intermediate neural progenitors.
Ren Q, Yang C, Liu Z, Sugino K, Mok K, He Y, Ito M, Nern A, Otsuna H, Lee T
Current Biology : CB. 2017 Apr 10;27(9):1303-13. doi: 10.1016/j.cub.2017.03.047

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.

View Publication Page
12/06/18 | Stem cells repurpose proliferation to contain a breach in their niche barrier.
Lay K, Yuan S, Gur-Cohen S, Miao Y, Han T, Naik S, Pasolli HA, Larsen SB, Fuchs E
eLife. 2018 Dec 06;7:. doi: 10.7554/eLife.41661

Adult stem cells are responsible for life-long tissue maintenance. They reside in and interact with specialized tissue microenvironments (niches). Using murine hair follicle as a model, we show that when junctional perturbations in the niche disrupt barrier function, adjacent stem cells dramatically change their transcriptome independent of bacterial invasion and become capable of directly signaling to and recruiting immune cells. Additionally, these stem cells elevate cell cycle transcripts which reduce their quiescence threshold, enabling them to selectively proliferate within this microenvironment of immune distress cues. However, rather than mobilizing to fuel new tissue regeneration, these ectopically proliferative stem cells remain within their niche to contain the breach. Together, our findings expose a potential communication relay system that operates from the niche to the stem cells to the immune system and back. The repurposing of proliferation by these stem cells patch the breached barrier, stoke the immune response and restore niche integrity.

View Publication Page