Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3945 Publications

Showing 761-770 of 3945 results
01/07/21 | Characterization of a common progenitor pool of the epicardium and myocardium.
Tyser RC, Ibarra-Soria X, McDole K, A Jayaram S, Godwin J, van den Brand TA, Miranda AM, Scialdone A, Keller PJ, Marioni JC, Srinivas S
Science. 2021 Jan 07:. doi: 10.1126/science.abb2986

The mammalian heart is derived from multiple cell lineages; however, our understanding of when and how the diverse cardiac cell types arise is limited. We mapped the origin of the embryonic mouse heart at single-cell resolution using a combination of transcriptomic, imaging, and genetic lineage labeling approaches. This provided a transcriptional and anatomic definition of cardiac progenitor types. Furthermore, it revealed a cardiac progenitor pool that is anatomically and transcriptionally distinct from currently known cardiac progenitors. Besides contributing to cardiomyocytes, these cells also represent the earliest progenitor of the epicardium, a source of trophic factors and cells during cardiac development and injury. This study provides detailed insights into the formation of early cardiac cell types, with particular relevance to the development of cell-based cardiac regenerative therapies.

View Publication Page
01/15/19 | Characterization of neurite dystrophy after trauma by high speed structured illumination microscopy and lattice light sheet microscopy.
Phillips JK, Sherman SA, Cotton KY, Heddleston JM, Taylor AB, Finan JD
Journal of Neuroscience Methods. 2019 Jan 15;312:154-61. doi: 10.1016/j.jneumeth.2018.12.005

BACKGROUND: Unbiased screening studies have repeatedly identified actin-related proteins as one of the families of proteins most influenced by neurotrauma. Nevertheless, the status quo model of cytoskeletal reorganization after neurotrauma excludes actin and incorporates only changes in microtubules and intermediate filaments. Actin is excluded in part because it is difficult to image with conventional techniques. However, recent innovations in fluorescent microscopy provide an opportunity to image the actin cytoskeleton at super-resolution resolution in living cells. This study applied these innovations to an in vitro model of neurotrauma.

NEW METHOD: New methods are introduced for traumatizing neurons before imaging them with high speed structured illumination microscopy or lattice light sheet microscopy. Also, methods for analyzing structured illumination microscopy images to quantify post-traumatic neurite dystrophy are presented.

RESULTS: Human induced pluripotent stem cell-derived neurons exhibited actin organization typical of immature neurons. Neurite dystrophy increased after trauma but was not influenced by jasplakinolide treatment. The F-actin content of dystrophies varied greatly from one dystrophy to another.

COMPARISON WITH EXISTING METHODS: In contrast to fixation dependent methods, these methods capture the evolution of the actin cytoskeleton over time in a living cell. In contrast to prior methods based on counting dystrophies, this quantification scheme parameterizes the severity of a given dystrophy as it evolves from a local swelling to an almost-perfect spheroid that threatens to transect the neurite.

CONCLUSIONS: These methods can be used to investigate genetic factors and therapeutic interventions that modulate the course of neurite dystrophy after trauma.

View Publication Page
03/01/20 | Characterization of the Genetic Architecture Underlying Eye Size Variation Within Drosophila melanogaster and Drosophila simulans.
Gaspar P, Arif S, Sumner-Rooney L, Kittelmann M, Bodey AJ, Stern DL, Nunes MD, McGregor AP
Genes|Genomes|Genetics. 2020 Mar 01;10(3):1005-18. doi: 10.1534/g3.119.400877
Sternson Lab
01/07/22 | Characterization of ultrapotent chemogenetic ligands for research applications in non-human primates
Jessica Raper , Mark A. G. Eldridge , Scott. M. Sternson , Jalene Y. Shim , Grace P. Fomani , Barry J. Richmond , Thomas Wichmann , Adriana Galvan
bioRxiv. 2022 Jan 07:. doi: 10.1101/2022.01.06.475241

Chemogenetics is a technique for obtaining selective pharmacological control over a cell population by expressing an engineered receptor that is selectively activated by an exogenously administered ligand. A promising approach for neuronal modulation involves the use of “Pharmacologically Selective Actuator Modules” (PSAMs); these chemogenetic receptors are selectively activated by ultrapotent “Pharmacologically Selective Effector Molecules” (uPSEMs). To extend the use of PSAM/PSEMs to studies in nonhuman primates it is necessary to thoroughly characterize the efficacy and safety of these tools. We describe the time course and brain penetrance in rhesus monkeys of two compounds with promising binding specificity and efficacy profiles in in vitro studies, uPSEM792 and uPSEM817, after systemic administration. Rhesus macaques received subcutaneous (s.c.) or intravenous (i.v.) administration of uPSEM817(0.064 mg/kg) or uPSEM792 (0.87 mg/kg) and plasma and CSF samples were collected over the course of 48 hours. Both compounds exhibited good brain penetrance, relatively slow washout and negligible conversion to potential metabolites - varenicline or hydroxyvarenicline. In addition, we found that neither of these uPSEMs significantly altered heart rate or sleep. Our results indicate that both compounds are suitable candidates for neuroscience studies using PSAMs in nonhuman primates.

View Publication Page
Sternson Lab
11/02/22 | Characterization of Ultrapotent Chemogenetic Ligands for Research Applications in Nonhuman Primates.
Raper J, Eldridge MA, Sternson SM, Shim JY, Fomani GP, Richmond BJ, Wichmann T, Galvan A
ACS Chemical Neuroscience. 2022 Nov 02;13(21):3118-3125. doi: 10.1021/acschemneuro.2c00525

Chemogenetics is a technique for obtaining selective pharmacological control over a cell population by expressing an engineered receptor that is selectively activated by an exogenously administered ligand. A promising approach for neuronal modulation involves the use of "Pharmacologically Selective Actuator Modules" (PSAMs); these chemogenetic receptors are selectively activated by ultrapotent "Pharmacologically Selective Effector Molecules" (uPSEMs). To extend the use of PSAM/PSEMs to studies in nonhuman primates, it is necessary to thoroughly characterize the efficacy and safety of these tools. We describe the time course and brain penetrance in rhesus monkeys of two compounds with promising binding specificity and efficacy profiles in studies, uPSEM792 and uPSEM817, after systemic administration. Rhesus monkeys received subcutaneous (s.c.) or intravenous (i.v.) administration of uPSEM817 (0.064 mg/kg) or uPSEM792 (0.87 mg/kg), and plasma and cerebrospinal fluid samples were collected over 48 h. Both compounds exhibited good brain penetrance, relatively slow washout, and negligible conversion to potential metabolites─varenicline or hydroxyvarenicline. In addition, we found that neither of these uPSEMs significantly altered the heart rate or sleep. Our results indicate that both compounds are suitable candidates for neuroscience studies using PSAMs in nonhuman primates.

View Publication Page
03/07/08 | Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy.
Ji N, Ostroverkhov V, Tian CS, Shen YR
Physical Review Letters. 2008 Mar 7;100(9):096102

Phase-sensitive sum-frequency spectroscopy provides correct characterization of vibrational resonances of water-vapor interfaces and allows better identification of interfacial water species contributing to different parts of the spectra. Iodine ions emerging at an interface create a surface field that tends to reorient the more loosely bonded water molecules below the topmost layer.

View Publication Page
03/31/23 | Characterization, Comparison, and Optimization of Lattice Light Sheets
Gaoxiang Liu , Xiongtao Ruan , Daniel E. Milkie , Frederik Görlitz , Matthew Mueller , Wilmene Hercule , Alison Kililea , Eric Betzig , Srigokul Upadhyayula
Science Advances. 2023 Mar 31:. doi: 10.1126/sciadv.ade6623

Lattice light sheet microscopy excels at the non-invasive imaging of three-dimensional (3D) dynamic processes at high spatiotemporal resolution within cells and developing embryos. Recently, several papers have called into question the performance of lattice light sheets relative to the Gaussian sheets most common in light sheet microscopy. Here we undertake a comprehensive theoretical and experimental analysis of various forms of light sheet microscopy which both demonstrates and explains why lattice light sheets provide significant improvements in resolution and photobleaching reduction. The analysis provides a procedure to select the correct light sheet for a desired experiment and specifies the processing that maximizes the use of all fluorescence generated within the light sheet excitation envelope for optimal resolution while minimizing image artifacts and photodamage. Development of a new type of “harmonic balanced” lattice light sheet is shown to improve performance at all spatial frequencies within its 3D resolution limits and maintains this performance over lengthened propagation distances allowing for expanded fields of view.

View Publication Page
Tjian LabLiu (Zhe) Lab
03/10/14 | Charting Brachyury-mediated developmental pathways during early mouse embryogenesis.
Lolas M, Valenzuela PD, Tjian R, Liu Z
Proceedings of the National Academy of Sciences of the United States of America. 2014 Mar 10;111(12):4478-83. doi: 10.1073/pnas.1402612111

To gain insights into coordinated lineage-specification and morphogenetic processes during early embryogenesis, here we report a systematic identification of transcriptional programs mediated by a key developmental regulator-Brachyury. High-resolution chromosomal localization mapping of Brachyury by ChIP sequencing and ChIP-exonuclease revealed distinct sequence signatures enriched in Brachyury-bound enhancers. A combination of genome-wide in vitro and in vivo perturbation analysis and cross-species evolutionary comparison unveiled a detailed Brachyury-dependent gene-regulatory network that directly links the function of Brachyury to diverse developmental pathways and cellular housekeeping programs. We also show that Brachyury functions primarily as a transcriptional activator genome-wide and that an unexpected gene-regulatory feedback loop consisting of Brachyury, Foxa2, and Sox17 directs proper stem-cell lineage commitment during streak formation. Target gene and mRNA-sequencing correlation analysis of the T(c) mouse model supports a crucial role of Brachyury in up-regulating multiple key hematopoietic and muscle-fate regulators. Our results thus chart a comprehensive map of the Brachyury-mediated gene-regulatory network and how it influences in vivo developmental homeostasis and coordination.

View Publication Page
Looger LabSternson Lab
09/02/11 | Chemical and genetic engineering of selective ion channel-ligand interactions.
Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM
Science. 2011 Sep 2;333(6047):1292-6. doi: 10.1126/science.1206606

Ionic flux mediates essential physiological and behavioral functions in defined cell populations. Cell type-specific activators of diverse ionic conductances are needed for probing these effects. We combined chemistry and protein engineering to enable the systematic creation of a toolbox of ligand-gated ion channels (LGICs) with orthogonal pharmacologic selectivity and divergent functional properties. The LGICs and their small-molecule effectors were able to activate a range of ionic conductances in genetically specified cell types. LGICs constructed for neuronal perturbation could be used to selectively manipulate neuron activity in mammalian brains in vivo. The diversity of ion channel tools accessible from this approach will be useful for examining the relationship between neuronal activity and animal behavior, as well as for cell biological and physiological applications requiring chemical control of ion conductance.

View Publication Page
07/23/24 | Chemical Induction of Longevity-Promoting Colanic Acid in the Host’s Microbiota
Hu G, Cooke MB, Wen AX, Yu X, Wang J, Herman C, Wang MC
bioRxiv. 2024 Jul 23:. doi: 10.1101/2024.07.23.604802

Microbiota-derived metabolites have emerged as key regulators of longevity. The metabolic activity of the gut microbiota, influenced by dietary components and ingested chemical compounds, profoundly impacts host fitness. While the benefits of dietary prebiotics are well-known, chemically targeting the gut microbiota to enhance host fitness remains largely unexplored. Here, we report a novel chemical approach to induce a pro-longevity bacterial metabolite in the host gut. We discovered that specific Escherichia coli strains overproduce colanic acids (CAs) when exposed to a low dose of cephaloridine, leading to an increased lifespan in host Caenorhabditis elegans. In the mouse gut, oral administration of low-dose cephaloridine induces the transcription of the capsular biosynthesis operon responsible for CA biosynthesis in commensal E. coli, which overcomes the inhibition of CA biosynthesis above 30 degrees C and enables its induction directly from the microbiota. Importantly, low-dose cephaloridine induces CA independently of its antibiotic properties through a previously unknown mechanism mediated by the membrane-bound histidine kinase ZraS. Our work lays the foundation for microbiota-based therapeutics through the chemical modulation of bacterial metabolism and reveals the promising potential of bacteria-targeting drugs in promoting host longevity.

View Publication Page