Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Riddiford Lab / Publications
general_search_page-panel_pane_1 | views_panes

44 Publications

Showing 1-10 of 44 results
Riddiford LabTruman LabRubin Lab
04/04/18 | Juvenile hormone reveals mosaic developmental programs in the metamorphosing optic lobe of Drosophila melanogaster.
Riddiford LM, Truman JW, Nern A
Biology Open. 2018 Apr 04:. doi: 10.1242/bio.034025

The development of the adult optic lobe (OL) of is directed by a wave of ingrowth of the photoreceptors over a two day period at the outset of metamorphosis which is accompanied by the appearance of the pupal-specific transcription factor Broad-Z3 (Br-Z3) and expression of early drivers in OL neurons. During this time, there are pulses of ecdysteroids that time the metamorphic events. At the outset, the transient appearance of juvenile hormone (JH) prevents precocious development of the OL caused by the ecdysteroid peak that initiates pupariation, but the artificial maintenance of JH after this time misdirects subsequent development. Axon ingrowth, Br-Z3 appearance and the expression of early drivers were unaffected, but aspects of later development such as the dendritic expansion of the lamina monopolar neurons and the expression of late drivers were suppressed. This effect of the exogenous JH mimic (JHM) pyriproxifen is lost by 24 hr after pupariation. Part of this effect of JHM is due to its suppression of the appearance of ecdysone receptor EcR-B1 that occurs after pupation and during early adult development.

View Publication Page
Truman LabRiddiford Lab
05/18/17 | Genetic tools to study juvenile hormone action in Drosophila.
Baumann AA, Texada MJ, Chen H, Etheredge JN, Miller DL, Picard S, Warner RD, Truman JW, Riddiford LM
Scientific Reports. 2017 May 18;7:2132. doi: 10.1038/s41598-017-02264-4

The insect juvenile hormone receptor is a basic helix-loop-helix (bHLH), Per-Arnt-Sim (PAS) domain protein, a novel type of hormone receptor. In higher flies like Drosophila, the ancestral receptor germ cell-expressed (gce) gene has duplicated to yield the paralog Methoprene-tolerant (Met). These paralogous receptors share redundant function during development but play unique roles in adults. Some aspects of JH function apparently require one receptor or the other. To provide a foundation for studying JH receptor function, we have recapitulated endogenous JH receptor expression with single cell resolution. Using Bacteria Artificial Chromosome (BAC) recombineering and a transgenic knock-in, we have generated a spatiotemporal expressional atlas of Metand gce throughout development. We demonstrate JH receptor expression in known JH target tissues, in which temporal expression corresponds with periods of hormone sensitivity. Larval expression largely supports the notion of functional redundancy. Furthermore, we provide the neuroanatomical distribution of JH receptors in both the larval and adult central nervous system, which will serve as a platform for future studies regarding JH action on insect behavior.

View Publication Page
Riddiford Lab
12/22/14 | The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama.
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM
Frontiers in Zoology. 2014;11(1):78. doi: 10.1186/s12983-014-0078-5

BACKGROUND: The popular view on insect sociality is that of a harmonious division of labor among two morphologically distinct and functionally non-overlapping castes. But this is a highly derived state and not a prerequisite for a functional society. Rather, caste-flexibility is a central feature in many eusocial wasps, where adult females have the potential to become queens or workers, depending on the social environment. In non-swarming paper wasps (e.g., Polistes), prospective queens fight one another to assert their dominance, with losers becoming workers if they remain on the nest. This aggression is fueled by juvenile hormone (JH) and ecdysteroids, major factors involved in caste differentiation in most eusocial insects. We tested whether these hormones have conserved aggression-promoting functions in Synoeca surinama, a caste-flexible swarm-founding wasp (Epiponini) where reproductive competition is high and aggressive displays are common.

RESULTS: We observed the behavioral interactions of S. surinama females in field nests before and after we had removed the egg-laying queen(s). We measured the ovarian reproductive status, hemolymph JH and ecdysteroid titers, ovarian ecdysteroid content, and analyzed the cuticular hydrocarbon (CHC) composition of females engaged in competitive interactions in both queenright and queenless contexts. These data, in combination with hormone manipulation experiments, revealed that neither JH nor ecdysteroids are necessary for the expression of dominance behaviors in S. surinama. Instead, we show that JH likely functions as a gonadotropin and directly modifies the cuticular hydrocarbon blend of young workers to match that of a reproductive. Hemolymph ecdysteroids, in contrast, are not different between queens and workers despite great differences in ovarian ecdysteroid content.

CONCLUSIONS: The endocrine profile of S. surinama shows surprising differences from those of other caste-flexible wasps, although a rise in JH titers in replacement queens is a common theme. Extensive remodeling of hormone functions is also evident in the highly eusocial bees, which has been attributed to the evolution of morphologically defined castes. Our results show that hormones which regulate caste-plasticity can lose these roles even while caste-plasticity is preserved.

View Publication Page
Riddiford Lab
05/13/14 | Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila.
Mirth CK, Tang HY, Makohon-Moore SC, Salhadar S, Gokhale RH, Warner RD, Koyama T, Riddiford LM, Shingleton AW
Proceedings of the National Academy of Science of the United States of America. 2014 May 13;111(19):7018-23. doi: 10.1073/pnas.1313058111

The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways.

View Publication Page
Riddiford Lab
04/17/14 | Reproductive status, endocrine physiology and chemical signaling in the Neotropical, swarm-founding eusocial wasp, Polybia micans Ducke (Vespidae: Epiponini).
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM
The Journal of Experimental Biology. 2014 Apr 17;217(Pt 13):2399-410. doi: 10.1242/jeb.096750

In the evolution of caste-based societies in Hymenoptera, the classical insect hormones, juvenile hormone (JH) and ecdysteroids, were co-opted into new functions. Social wasps, which show all levels of sociality and lifestyles, are an ideal group to study such functional changes. Virtually all studies on the physiological mechanisms underlying reproductive division of labor and caste functions in wasps have been done on independent-founding paper wasps, and the majority of these studies have focused on species specially adapted for overwintering. The relatively little studied tropical swarming-founding wasps of the Epiponini (Vespidae) are a diverse group of permanently social wasps, with some species maintaining caste flexibility well into the adult phase. We investigated the behavior, reproductive status, JH and ecdysteroid titers in hemolymph, ecdysteroid content of the ovary and cuticular hydrocarbon (CHC) profiles in the caste-monomorphic, epiponine wasp Polybia micans Ducke. We found that the JH titer was not elevated in competing queens from established multiple-queen nests, but increased in lone queens that lack direct competition. In queenless colonies, JH titers rose transiently in young potential reproductives upon challenge by nestmates, suggesting that JH may prime the ovaries for further development. Ovarian ecdysteroids were very low in workers but higher and correlated with the number of vitellogenic oocytes in the queens. Hemolymph ecdysteroid levels were low and variable in both. Profiles of P. micans CHCs reflected caste, age and reproductive status, but were not tightly linked to either hormone. These findings show a significant divergence in hormone function in swarm-founding wasps compared to independent-founding ones.

View Publication Page
Riddiford Lab
01/01/14 | The developmental control of size in insects.
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V
Wiley Interdisciplinary Reviews: Developmental Biology. 2014 Jan/Feb;3(1):113-34. doi: 10.1002/wdev.124

The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse. WIREs Dev Biol 2014, 3:113–134. doi: 10.1002/wdev.124

View Publication Page
Riddiford Lab
11/05/13 | Regulation of onset of female mating and sex pheromone production by juvenile hormone in Drosophila melanogaster.
Bilen J, Atallah J, Azanchi R, Levine JD, Riddiford LM
Proceedings of the National Academy of Sciences of the United States of America. 2013 Nov 5;110:18321-6. doi: 10.1073/pnas.1318119110

Juvenile hormone (JH) coordinates timing of female reproductive maturation in most insects. In Drosophila melanogaster, JH plays roles in both mating and egg maturation. However, very little is known about the molecular pathways associated with mating. Our behavioral analysis of females genetically lacking the corpora allata, the glands that produce JH, showed that they were courted less by males and mated later than control females. Application of the JH mimic, methoprene, to the allatectomized females just after eclosion rescued both the male courtship and the mating delay. Our studies of the null mutants of the JH receptors, Methoprene tolerant (Met) and germ cell-expressed (gce), showed that lack of Met in Met(27) females delayed the onset of mating, whereas lack of Gce had little effect. The Met(27) females were shown to be more attractive but less behaviorally receptive to copulation attempts. The behavioral but not the attractiveness phenotype was rescued by the Met genomic transgene. Analysis of the female cuticular hydrocarbon profiles showed that corpora allata ablation caused a delay in production of the major female-specific sex pheromones (the 7,11-C27 and -C29 dienes) and a change in the cuticular hydrocarbon blend. In the Met(27) null mutant, by 48 h, the major C27 diene was greatly increased relative to wild type. In contrast, the gce(2.5k) null mutant females were courted similarly to control females despite changes in certain cuticular hydrocarbons. Our findings indicate that JH acts primarily via Met to modulate the timing of onset of female sex pheromone production and mating.

View Publication Page
Riddiford LabTruman Lab
07/30/13 | A molt timer is involved in the metamorphic molt in Manduca sexta larvae.
Suzuki Y, Koyama T, Hiruma K, Riddiford LM, Truman JW
Proceedings of the National Academy of Sciences of the United States of America. 2013 Jul 30;110(31):12518-25. doi: 10.1073/pnas.1311405110

Manduca sexta larvae are a model for growth control in insects, particularly for the demonstration of critical weight, a threshold weight that the larva must surpass before it can enter metamorphosis on a normal schedule, and the inhibitory action of juvenile hormone on this checkpoint. We examined the effects of nutrition on allatectomized (CAX) larvae that lack juvenile hormone to impose the critical weight checkpoint. Normal larvae respond to prolonged starvation at the start of the last larval stage, by extending their subsequent feeding period to ensure that they begin metamorphosis above critical weight. CAX larvae, by contrast, show no homeostatic adjustment to starvation but start metamorphosis 4 d after feeding onset, regardless of larval size or the state of development of their imaginal discs. By feeding starved CAX larvae for various durations, we found that feeding for only 12-24 h was sufficient to result in metamorphosis on day 4, regardless of further feeding or body size. Manipulation of diet composition showed that protein was the critical macronutrient to initiate this timing. This constant period between the start of feeding and the onset of metamorphosis suggests that larvae possess a molt timer that establishes a minimal time to metamorphosis. Ligation experiments indicate that a portion of the timing may occur in the prothoracic glands. This positive system that promotes molting and the negative control via the critical weight checkpoint provide antagonistic pathways that evolution can modify to adapt growth to the ecological needs of different insects.

View Publication Page
Riddiford Lab
06/11/13 | Microarrays reveal discrete phases in juvenile hormone regulation of mosquito reproduction.
Riddiford LM
Proceedings of the National Academy of Sciences of the United States of America. 2013 Jun 11;110(24):9623-4. doi: 10.1073/pnas.1307487110
Riddiford Lab
01/07/13 | The juvenile hormone signaling pathway in insect development.
Jindra M, Palli SR, Riddiford LM
Annual Review of Entomology. 2013 Jan 7;58:181-204. doi: 10.1146/annurev-ento-120811-153700

The molecular action of juvenile hormone (JH), a regulator of vital importance to insects, was until recently regarded as a mystery. The past few years have seen an explosion of studies of JH signaling, sparked by a finding that a JH-resistance gene, Methoprene-tolerant (Met), plays a critical role in insect metamorphosis. Here, we summarize the recently acquired knowledge on the capacity of Met to bind JH, which has been mapped to a particular ligand-binding domain, thus establishing this bHLH-PAS protein as a novel type of an intracellular hormone receptor. Next, we consider the significance of JH-dependent interactions of Met with other transcription factors and signaling pathways. We examine the regulation and biological roles of genes acting downstream of JH and Met in insect metamorphosis. Finally, we discuss the current gaps in our understanding of JH action and outline directions for future research.

View Publication Page