Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Abstract
Neural circuits mediating visually evoked escape behaviors are promising systems in which to dissect the neural basis of behavior. Behavioral responses to predator-like looming stimuli, and their underlying neural computations, are remarkably similar across species. Recently, genetic tools have been applied in this classical paradigm, revealing novel non-cortical pathways that connect loom processing to defensive behaviors in mammals and demonstrating that loom encoding models from locusts also fit vertebrate neural responses. In both invertebrates and vertebrates, relative spike-timing in descending pathways is a mechanism for escape behavior choice. Current findings suggest that experimentally tractable systems, such as Drosophila, may be applicable models for sensorimotor processing and persistent states in higher organisms.