Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium

Note: Research in this publication was not performed at Janelia.
Abstract
Intracellular recordings are routinely used to study the synaptic and intrinsic properties of neurons in vitro. A key requirement for these recordings is a mechanically very stable preparation; thus their use in vivo had been limited previously to head-restrained animals. We have recently demonstrated that anchoring the electrode rigidly in place with respect to the skull provides sufficient stabilization for long-lasting, high-quality whole-cell recordings in awake, freely moving rats. This protocol describes our procedure in detail, adds specific instructions for targeting hippocampal CA1 pyramidal neurons and updates it with changes that facilitate patching and improve the success rate. The changes involve combining a standard, nonhead-mounted micromanipulator with a gripper to firmly hold the recording pipette during the anchoring process then gently release it afterwards. The procedure from the beginning of surgery to the end of a recording takes approximately 5 h. This technique allows new studies of the mechanisms underlying neuronal integration and cellular/synaptic plasticity in identified cells during natural behaviors.