Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Abstract
Individuals vary in their innate behaviors, even when they have the same genome and have been reared in the same environment. The extent of individuality in plastic behaviors, like learning, is less well characterized. Also unknown is the extent to which intragenotypic differences in learning generalize: if an individual performs well in one assay, will it perform well in other assays? We investigated this using the fruit fly Drosophila melanogaster, an organism long-used to study the mechanistic basis of learning and memory. We found that isogenic flies, reared in identical lab conditions, and subject to classical conditioning that associated odorants with electric shock, exhibit clear individuality in their learning responses. Flies that performed well when an odor was paired with shock tended to perform well when other odors were paired with shock, or when the original odor was paired with bitter taste. Thus, individuality in learning performance appears to be prominent in isogenic animals reared identically, and individual differences in learning performance generalize across stimulus modalities. Establishing these results in flies opens up the possibility of studying the genetic and neural circuit basis of individual differences in learning in a highly suitable model organism.
bioRxiv PrePrint https://doi.org/10.1101/2021.01.23.427920