Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2809 Janelia Publications

Showing 1331-1340 of 2809 results
02/06/26 | Imp1 acts as a dosage- and stage-dependent temporal rheostat orchestrating radial glial fate transitions and cortical morphogenesis
Azur RA, Feliciano D, Espinosa-Medina I, Adhikari R, Lilao-Garzón J, Jansen E, Yang C, Lee T
eLife. 2026 Feb 06:. doi: 10.7554/elife.109847.1

Cortical neurogenesis proceeds through a precise temporal program in which radial glia sequentially generate distinct neuronal subtypes and later glia, yet how post-transcriptional regulators coordinate these transitions remain poorly understood. We previously identified that a decreasing temporal gradient of the RNA-binding protein Imp encodes neural stem cell age in Drosophila. In this work, we extend our investigation to Imp1, a mammalian homologue of Imp, and its role in murine neocortical development. Using TEMPO to track birth-order dynamics, we demonstrate that sustained Imp1 overexpression during early neurogenesis arrests temporal fate progression, shifting neuronal populations toward deeper cortical layers V-VI. Immunostaining with layer-specific transcription factors Cux1 and Ctip2 confirmed that laminar repositioning results from genuine changes in neuronal identity rather than migratory defects, with neurons adopting molecular identities matching their final positions. Temporal window-specific manipulations reveal distinct stage-specific effects where early-stage Imp1 induction produces cascading effects on fate specification and moderately delays the neuronal-to-gliogenic transition, while mid-stage induction induces neuronal accumulation in the subplate region. Live imaging of organotypic cultures reveals continuous neuronal recruitment within intermediate and ventricular zones, with mid-stage-born neurons accumulating at significantly faster rates than earlier cohorts. Strikingly, mid-stage Imp1 overexpression also induces ectopic glial-like foci distributed throughout the cortical plate, featuring dramatic cellular expansion and morphological heterogeneity. These findings establish Imp1 as a dosage- and stage-dependent temporal rheostat orchestrating developmental transitions in radial glial progenitors, controlling neuronal fate decisions and spatial organization. This work advances our understanding of molecular timing mechanisms governing neuronal diversity in the mammalian cortex.

 

View Publication Page
Pastalkova Lab
03/01/12 | Implantable blood pressure monitoring cuff for small laboratory animal.
Pais R, Duttaroy A, Wolever J, Dobbs M, Pastalkova E
Microsystems for Measurement and Instrumentation (MAMNA), 2012. 2012 Mar:. doi: 10.1109/MAMNA.2012.6195099

Continuous monitoring of blood pressure in laboratory animals is necessary to understand the effect of treatments for cardiovascular related conditions, such as hypertension. Current methods to measure laboratory rat blood pressure require the animal to be constrained. Our proposed method is a small implantable device which fits around the carotid artery of the rat. Initial data from a mock rat artery setup, with equivalent artery pressure as found in the rat, show that the cuff design effectively detects the pressure change inside the mock artery.

View Publication Page
10/24/19 | Importance Weighted Adversarial Variational Autoencoders for Spike Inference from Calcium Imaging Data
Daniel Jiwoong Im , Sridhama Prakhya , Jinyao Yan , Srinivas C. Turaga , Kristin Branson
CoRR. 10/2019;abs/1906.03214:

The Importance Weighted Auto Encoder (IWAE) objective has been shown to improve the training of generative models over the standard Variational Auto Encoder (VAE) objective. Here, we derive importance weighted extensions to Adversarial Variational Bayes (AVB) and Adversarial Autoencoder (AAE). These latent variable models use implicitly defined inference networks whose approximate posterior density qφ(z|x) cannot be directly evaluated, an essential ingredient for importance weighting. We show improved training and inference in latent variable models with our adversarially trained importance weighting method, and derive new theoretical connections between adversarial generative model training criteria and marginal likelihood based methods. We apply these methods to the important problem of inferring spiking neural activity from calcium imaging data, a challenging posterior inference problem in neuroscience, and show that posterior samples from the adversarial methods outperform factorized posteriors used in VAEs.

View Publication Page
11/24/20 | Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging.
Qian Y, Cosio DM, Piatkevich KD, Aufmkolk S, Su W, Celiker OT, Schohl A, Murdock MH, Abhi Aggarwal , Chang Y, Wiseman PW, Ruthazer ES, Boyden ES, Campbell RE
PLoS Biology. 2020 Nov 24;18(11):e3000965. doi: 10.1371/journal.pbio.3000965

Near-infrared (NIR) genetically encoded calcium ion (Ca2+) indicators (GECIs) can provide advantages over visible wavelength fluorescent GECIs in terms of reduced phototoxicity, minimal spectral cross talk with visible light excitable optogenetic tools and fluorescent probes, and decreased scattering and absorption in mammalian tissues. Our previously reported NIR GECI, NIR-GECO1, has these advantages but also has several disadvantages including lower brightness and limited fluorescence response compared to state-of-the-art visible wavelength GECIs, when used for imaging of neuronal activity. Here, we report 2 improved NIR GECI variants, designated NIR-GECO2 and NIR-GECO2G, derived from NIR-GECO1. We characterized the performance of the new NIR GECIs in cultured cells, acute mouse brain slices, and Caenorhabditis elegans and Xenopus laevis in vivo. Our results demonstrate that NIR-GECO2 and NIR-GECO2G provide substantial improvements over NIR-GECO1 for imaging of neuronal Ca2+ dynamics.

View Publication Page
01/14/20 | Improved HaloTag Ligand Enables BRET Imaging With NanoLuc
Thirukkumaran OM, Wang C, Asouzu NJ, Fron E, Rocha S, Hofkens J, Lavis LD, Mizuno H
Frontiers in Chemistry. 2020 Jan 14;7:. doi: 10.3389/fchem.2019.0093810.3389/fchem.2019.00938.s001
10/25/18 | Improved methods for marking active neuron populations.
Moeyaert B, Holt G, Madangopal R, Perez-Alvarez A, Fearey BC, Trojanowski NF, Ledderose J, Zolnik TA, Das A, Patel D, Brown TA, Sachdev RN, Eickholt BJ, Larkum ME, Turrigiano GG, Dana H, Gee CE, Oertner TG, Hope BT, Schreiter ER
Nature Communications. 2018 Oct 25;9(1):4440. doi: 10.1038/s41467-018-06935-2

Marking functionally distinct neuronal ensembles with high spatiotemporal resolution is a key challenge in systems neuroscience. We recently introduced CaMPARI, an engineered fluorescent protein whose green-to-red photoconversion depends on simultaneous light exposure and elevated calcium, which enabled marking active neuronal populations with single-cell and subsecond resolution. However, CaMPARI (CaMPARI1) has several drawbacks, including background photoconversion in low calcium, slow kinetics and reduced fluorescence after chemical fixation. In this work, we develop CaMPARI2, an improved sensor with brighter green and red fluorescence, faster calcium unbinding kinetics and decreased photoconversion in low calcium conditions. We demonstrate the improved performance of CaMPARI2 in mammalian neurons and in vivo in larval zebrafish brain and mouse visual cortex. Additionally, we herein develop an immunohistochemical detection method for specific labeling of the photoconverted red form of CaMPARI. The anti-CaMPARI-red antibody provides strong labeling that is selective for photoconverted CaMPARI in activated neurons in rodent brain tissue.

View Publication Page
Freeman Lab
08/26/16 | Improving data quality in neuronal population recordings.
Harris KD, Quiroga RQ, Freeman J, Smith SL
Nature Neuroscience. 2016 Aug 26;19(9):1165-74. doi: 10.1038/nn.4365

Understanding how the brain operates requires understanding how large sets of neurons function together. Modern recording technology makes it possible to simultaneously record the activity of hundreds of neurons, and technological developments will soon allow recording of thousands or tens of thousands. As with all experimental techniques, these methods are subject to confounds that complicate the interpretation of such recordings, and could lead to erroneous scientific conclusions. Here we discuss methods for assessing and improving the quality of data from these techniques and outline likely future directions in this field.

View Publication Page
Menon Lab
02/24/14 | Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq.
Miller JA, Menon V, Goldy J, Kaykas A, Lee C, Smith KA, Shen EH, Phillips JW, Lein ES, Hawrylycz MJ
BMC genomics. 2014;15:154. doi: 10.1186/1471-2164-15-154

BACKGROUND: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and academic settings represent valuable and often underappreciated resources, and methods for assessing and improving the quality of these data are lacking.

RESULTS: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the same microarray platform.

CONCLUSIONS: Microarrays provide consistent, reproducible gene expression measurements, which are improved using RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from major existing repositories.

View Publication Page
06/02/11 | In search of the structure of human olfactory space.
Koulakov A, Kolterman BE, Enikolopov A, Rinberg D
Frontiers in Systems Neuroscience. 2011 Jun 2;5:65

We analyze the responses of human observers to an ensemble of monomolecular odorants. Each odorant is characterized by a set of 146 perceptual descriptors obtained from a database of odor character profiles. Each odorant is therefore represented by a point in a highly multidimensional sensory space. In this work we study the arrangement of odorants in this perceptual space. We argue that odorants densely sample a two-dimensional curved surface embedded in the multidimensional sensory space. This surface can account for more than half of the variance of the perceptual data. We also show that only 12% of experimental variance cannot be explained by curved surfaces of substantially small dimensionality (<10). We suggest that these curved manifolds represent the relevant spaces sampled by the human olfactory system, thereby providing surrogates for olfactory sensory space. For the case of 2D approximation, we relate the two parameters on the curved surface to the physico-chemical parameters of odorant molecules. We show that one of the dimensions is related to eigenvalues of molecules’ connectivity matrix, while the other is correlated with measures of molecules’ polarity. We discuss the behavioral significance of these findings.

View Publication Page
05/16/22 | In situ cryo-electron tomography reveals the asymmetric architecture of mammalian sperm axonemes
Zhen Chen , Garrett A. Greenan , Momoko Shiozaki , Yanxin Liu , Will M. Skinner , Xiaowei Zhao , Shumei Zhao , Rui Yan , Caiying Guo , Zhiheng Yu , Polina V. Lishko , David A. Agard , Ronald D. Vale
bioRxiv. 2022 May 16:. doi: 10.1101/2022.05.15.492011

The flagella of mammalian sperm display non-planar, asymmetric beating, in contrast to the planar, symmetric beating of flagella from sea urchin sperm and unicellular organisms. The molecular basis of this difference is unclear. Here, we perform in situ cryo-electron tomography of mouse and human sperm axonemes, providing the highest resolution structural information to date. Our subtomogram averages reveal mammalian sperm- specific protein complexes within the outer microtubule doublets, the radial spokes and nexin-dynein regulatory complexes. The locations and structures of these complexes suggest potential roles in enhancing the mechanical strength of mammalian sperm axonemes and regulating dynein-based axonemal bending. Intriguingly, we find that each of the nine outer microtubule doublets is decorated with a distinct combination of sperm- specific complexes. We propose that this asymmetric distribution of proteins differentially regulates the sliding of each microtubule doublet and may underlie the asymmetric beating of mammalian sperm.

View Publication Page