Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1111-1120 of 3920 results
09/05/17 | Dissection of the Drosophila neuropeptide F circuit using a high-throughput two-choice assay.
Shao L, Saver M, Chung P, Ren Q, Lee T, Kent CF, Heberlein U
Proceedings of the National Academy of Sciences of the United States of America. 2017 Sep 05;114(38):e8091-9. doi: 10.1073/pnas.1710552114

In their classic experiments, Olds and Milner showed that rats learn to lever press to receive an electric stimulus in specific brain regions. This led to the identification of mammalian reward centers. Our interest in defining the neuronal substrates of reward perception in the fruit fly Drosophila melanogaster prompted us to develop a simpler experimental approach wherein flies could implement behavior that induces self-stimulation of specific neurons in their brains. The high-throughput assay employs optogenetic activation of neurons when the fly occupies a specific area of a behavioral chamber, and the flies' preferential occupation of this area reflects their choosing to experience optogenetic stimulation. Flies in which neuropeptide F (NPF) neurons are activated display preference for the illuminated side of the chamber. We show that optogenetic activation of NPF neuron is rewarding in olfactory conditioning experiments and that the preference for NPF neuron activation is dependent on NPF signaling. Finally, we identify a small subset of NPF-expressing neurons located in the dorsomedial posterior brain that are sufficient to elicit preference in our assay. This assay provides the means for carrying out unbiased screens to map reward neurons in flies.

View Publication Page
09/07/21 | Dissociable contributions of phasic dopamine activity to reward and prediction.
Pan W, Coddington LT, Dudman JT
Cell Reports. 2021 Sep 07;36(10):109684. doi: 10.1016/j.celrep.2021.109684

Sensory cues that precede reward acquire predictive (expected value) and incentive (drive reward-seeking action) properties. Mesolimbic dopamine neurons' responses to sensory cues correlate with both expected value and reward-seeking action. This has led to the proposal that phasic dopamine responses may be sufficient to inform value-based decisions, elicit actions, and/or induce motivational states; however, causal tests are incomplete. Here, we show that direct dopamine neuron stimulation, both calibrated to physiological and greater intensities, at the time of reward can be sufficient to induce and maintain reward seeking (reinforcing) although replacement of a cue with stimulation is insufficient to induce reward seeking or act as an informative cue. Stimulation of descending cortical inputs, one synapse upstream, are sufficient for reinforcement and cues to future reward. Thus, physiological activation of mesolimbic dopamine neurons can be sufficient for reinforcing properties of reward without being sufficient for the predictive and incentive properties of cues.

View Publication Page
04/10/18 | Dissociable structural and functional hippocampal outputs via distinct subiculum cell classes.
Cembrowski MS, Phillips MG, DiLisio SF, Shields BC, Winnubst J, Chandrashekar J, Bas E, Spruston N
Cell. 2018 Apr 10;173(5):1280-92. doi: 10.1016/j.cell.2018.03.031

The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.

View Publication Page
08/01/13 | Distance preserving embeddings for general n-dimensional manifolds.
Verma N
Journal of Machine Learning Research. 2013 Aug;14:2415-48
05/04/06 | Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons.
Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, Geinisman Y
Neuron. 2006 May 4;50(3):431-42. doi: 10.1016/j.neuron.2006.03.022

The ability of synapses throughout the dendritic tree to influence neuronal output is crucial for information processing in the brain. Synaptic potentials attenuate dramatically, however, as they propagate along dendrites toward the soma. To examine whether excitatory axospinous synapses on CA1 pyramidal neurons compensate for their distance from the soma to counteract such dendritic filtering, we evaluated axospinous synapse number and receptor expression in three progressively distal regions: proximal and distal stratum radiatum (SR), and stratum lacunosum-moleculare (SLM). We found that the proportion of perforated synapses increases as a function of distance from the soma and that their AMPAR, but not NMDAR, expression is highest in distal SR and lowest in SLM. Computational models of pyramidal neurons derived from these results suggest that they arise from the compartment-specific use of conductance scaling in SR and dendritic spikes in SLM to minimize the influence of distance on synaptic efficacy.

View Publication Page
Svoboda Lab
10/30/13 | Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex.
Yang W, Carrasquillo Y, Hooks BM, Nerbonne JM, Burkhalter A
The Journal of Neuroscience. 2013 Oct 30;33(44):17373-84. doi: 10.1523/JNEUROSCI.2515-13.2013

Mouse visual cortex is subdivided into multiple distinct, hierarchically organized areas that are interconnected through feedforward (FF) and feedback (FB) pathways. The principal synaptic targets of FF and FB axons that reciprocally interconnect primary visual cortex (V1) with the higher lateromedial extrastriate area (LM) are pyramidal cells (Pyr) and parvalbumin (PV)-expressing GABAergic interneurons. Recordings in slices of mouse visual cortex have shown that layer 2/3 Pyr cells receive excitatory monosynaptic FF and FB inputs, which are opposed by disynaptic inhibition. Most notably, inhibition is stronger in the FF than FB pathway, suggesting pathway-specific organization of feedforward inhibition (FFI). To explore the hypothesis that this difference is due to diverse pathway-specific strengths of the inputs to PV neurons we have performed subcellular Channelrhodopsin-2-assisted circuit mapping in slices of mouse visual cortex. Whole-cell patch-clamp recordings were obtained from retrobead-labeled FFV1→LM- and FBLM→V1-projecting Pyr cells, as well as from tdTomato-expressing PV neurons. The results show that the FFV1→LM pathway provides on average 3.7-fold stronger depolarizing input to layer 2/3 inhibitory PV neurons than to neighboring excitatory Pyr cells. In the FBLM→V1 pathway, depolarizing inputs to layer 2/3 PV neurons and Pyr cells were balanced. Balanced inputs were also found in the FFV1→LM pathway to layer 5 PV neurons and Pyr cells, whereas FBLM→V1 inputs to layer 5 were biased toward Pyr cells. The findings indicate that FFI in FFV1→LM and FBLM→V1 circuits are organized in a pathway- and lamina-specific fashion.

View Publication Page
10/06/06 | Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms.
Rothenfluh A, Threlkeld RJ, Bainton RJ, Tsai LT, Lasek AW, Heberlein U
Cell. 2006 Oct 6;127(1):199-211. doi: 10.1016/j.cell.2006.09.010

In most organisms, low ethanol doses induce increased activity, while high doses are sedating. To investigate the underlying mechanisms, we isolated Drosophila mutants with altered ethanol responsiveness. Mutations in white rabbit (whir), disrupting RhoGAP18B, are strongly resistant to the sedating effects of ethanol. This resistance can be suppressed by reducing the levels of Rho1 or Rac, implicating these GTPases in the behavioral response to ethanol. Indeed, expression of constitutively active forms of Rho1 or Rac1 in adult flies results in ethanol resistance similar to that observed in whir mutants. The whir locus produces several transcripts, RA-RD, which are predicted to encode three distinct RhoGAPs that share only the GAP domain. The RC transcript mediates the sedating effects of ethanol, while the RA transcript regulates its stimulant effects. Thus, distinct RhoGAPs, encoded by the same gene, regulate different manifestations of acute ethanol intoxication.

View Publication Page
Murphy Lab
06/13/18 | Distinct cell types in the superficial superior colliculus project to the dorsal lateral geniculate and lateral posterior thalamic nuclei.
Gale SD, Murphy GJ
Journal of Neurophysiology. 2018 Jun 13;120(3):1286-92. doi: 10.1152/jn.00248.2018

The superficial layers of the superior colliculus (sSC) receive retinal input and project to thalamic regions - the dorsal lateral geniculate (dLGN) and lateral posterior (LP; or pulvinar) nuclei -that convey visual information to cortex. A critical step towards understanding the functional impact of sSC neurons on these parallel thalamo-cortical pathways is determining whether different classes of sSC neurons, which are known to respond to different features of visual stimuli, innervate overlapping or distinct thalamic targets. Here, we identified a transgenic mouse line that labels sSC neurons that project to dLGN but not LP. We utilized selective expression of fluorophores and channelrhodopsin in this and previously characterized mouse lines to demonstrate that distinct cell types give rise to sSC projections to dLGN and LP. We further show that the glutamatergic sSC cell type that projects to dLGN also provides input to the sSC cell type that projects to LP. These results clarify the cellular origin of parallel sSC-thalamo-cortical pathways and reveal an interaction between these pathways via local connections within the sSC.

View Publication Page
Tjian Lab
07/01/04 | Distinct conformational states of nuclear receptor-bound CRSP-Med complexes.
Taatjes DJ, Schneider-Poetsch T, Tjian R
Nature Structural & Molecular Biology. 2004 Jul;11(7):664-71. doi: 10.1073/pnas.1100640108

The human CRSP-Med coactivator complex is targeted by a diverse array of sequence-specific regulatory proteins. Using EM and single-particle reconstruction techniques, we recently completed a structural analysis of CRSP-Med bound to VP16 and SREBP-1a. Notably, these activators induced distinct conformational states upon binding the coactivator. Ostensibly, these different conformational states result from VP16 and SREBP-1a targeting distinct subunits in the CRSP-Med complex. To test this, we conducted a structural analysis of CRSP-Med bound to either thyroid hormone receptor (TR) or vitamin D receptor (VDR), both of which interact with the same subunit (Med220) of CRSP-Med. Structural comparison of TR- and VDR-bound complexes (at a resolution of 29 A) indeed reveals a shared conformational feature that is distinct from other known CRSP- Med structures. Importantly, this nuclear receptor-induced structural shift seems largely dependent on the movement of Med220 within the complex.

View Publication Page
Looger LabSvoboda LabMouseLightQuantitative Genomics
10/31/18 | Distinct descending motor cortex pathways and their roles in movement.
Economo MN, Viswanathan S, Tasic B, Bas E, Winnubst J, Menon V, Graybuck LT, Nguyen TN, Smith KA, Yao Z, Wang L, Gerfen CR, Chandrashekar J, Zeng H, Looger LL, Svoboda K
Nature. 2018 Nov;563(7729):79-84. doi: 10.1038/s41586-018-0642-9

Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.

View Publication Page