Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1311-1320 of 3920 results
10/01/10 | Error tolerant indexing and alignment of short reads with covering template families.
Giladi E, Healy J, Myers G, Hart C, Kapranov P, Lipson D, Roels S, Thayer E, Letovsky S
Journal of Computational Biology: A Journal of Computational Molecular Cell Biology. 2010 Oct;17(10):1397-1411. doi: 10.1089/cmb.2010.0005

The rapid adoption of high-throughput next generation sequence data in biological research is presenting a major challenge for sequence alignment tools—specifically, the efficient alignment of vast amounts of short reads to large references in the presence of differences arising from sequencing errors and biological sequence variations. To address this challenge, we developed a short read aligner for high-throughput sequencer data that is tolerant of errors or mutations of all types—namely, substitutions, deletions, and insertions. The aligner utilizes a multi-stage approach in which template-based indexing is used to identify candidate regions for alignment with dynamic programming. A template is a pair of gapped seeds, with one used with the read and one used with the reference. In this article, we focus on the development of template families that yield error-tolerant indexing up to a given error-budget. A general algorithm for finding those families is presented, and a recursive construction that creates families with higher error tolerance from ones with a lower error tolerance is developed.

View Publication Page
Tjian Lab
05/06/08 | ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a.
Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z
Proceedings of the National Academy of Sciences of the United States of America. 2008 May 6;105(18):6656-61. doi: 10.1073/pnas.1100640108

ATP-dependent chromatin remodeling complexes are a notable group of epigenetic modifiers that use the energy of ATP hydrolysis to change the structure of chromatin, thereby altering its accessibility to nuclear factors. BAF250a (ARID1a) is a unique and defining subunit of the BAF chromatin remodeling complex with the potential to facilitate chromosome alterations critical during development. Our studies show that ablation of BAF250a in early mouse embryos results in developmental arrest (about embryonic day 6.5) and absence of the mesodermal layer, indicating its critical role in early germ-layer formation. Moreover, BAF250a deficiency compromises ES cell pluripotency, severely inhibits self-renewal, and promotes differentiation into primitive endoderm-like cells under normal feeder-free culture conditions. Interestingly, this phenotype can be partially rescued by the presence of embryonic fibroblast cells. DNA microarray, immunostaining, and RNA analyses revealed that BAF250a-mediated chromatin remodeling contributes to the proper expression of numerous genes involved in ES cell self-renewal, including Sox2, Utf1, and Oct4. Furthermore, the pluripotency defects in BAF250a mutant ES cells appear to be cell lineage-specific. For example, embryoid body-based analyses demonstrated that BAF250a-ablated stem cells are defective in differentiating into fully functional mesoderm-derived cardiomyocytes and adipocytes but are capable of differentiating into ectoderm-derived neurons. Our results suggest that BAF250a is a key component of the gene regulatory machinery in ES cells controlling self-renewal, differentiation, and cell lineage decisions.

View Publication Page
Card Lab
04/01/12 | Escape behaviors in insects.
Card GM
Current Opinion in Neurobiology. 2012 Apr;22:180-6. doi: 10.1016/j.conb.2011.12.009

Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior.

View Publication Page
04/22/22 | ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack.
Ritter AT, Shtengel G, Xu CS, Weigel A, Hoffman DP, Freeman M, Iyer N, Alivodej N, Ackerman D, Voskoboinik I, Trapani J, Hess HF, Mellman I
Science. 2022 Apr 22;376(6591):377-382. doi: 10.1126/science.abl3855

Cytotoxic T lymphocytes (CTLs) and natural killer cells kill virus-infected and tumor cells through the polarized release of perforin and granzymes. Perforin is a pore-forming toxin that creates a lesion in the plasma membrane of the target cell through which granzymes enter the cytosol and initiate apoptosis. Endosomal sorting complexes required for transport (ESCRT) proteins are involved in the repair of small membrane wounds. We found that ESCRT proteins were precisely recruited in target cells to sites of CTL engagement immediately after perforin release. Inhibition of ESCRT machinery in cancer-derived cells enhanced their susceptibility to CTL-mediated killing. Thus, repair of perforin pores by ESCRT machinery limits granzyme entry into the cytosol, potentially enabling target cells to resist cytolytic attack.

View Publication Page
06/08/13 | Essential role of the mushroom body in context-dependent CO2 avoidance in Drosophila.
Bräcker LB, Siju KP, Varela N, Aso Y, Zhang M, Hein I, Vasconcelos ML, Grunwald Kadow IC
Current Biology. 2013 Jul 8;23(13):1228-34. doi: 10.1016/j.cub.2013.05.029

Internal state as well as environmental conditions influence choice behavior. The neural circuits underpinning state-dependent behavior remain largely unknown. Carbon dioxide (CO2) is an important olfactory cue for many insects, including mosquitoes, flies, moths, and honeybees [1]. Concentrations of CO2 higher than 0.02% above atmospheric level trigger a strong innate avoidance in the fly Drosophila melanogaster [2, 3]. Here, we show that the mushroom body (MB), a brain center essential for olfactory associative memories [4-6] but thought to be dispensable for innate odor processing [7], is essential for CO2 avoidance behavior only in the context of starvation or in the context of a food-related odor. Consistent with this, CO2 stimulation elicits Ca(2+) influx into the MB intrinsic cells (Kenyon cells: KCs) in vivo. We identify an atypical projection neuron (bilateral ventral projection neuron, biVPN) that connects CO2 sensory input bilaterally to the MB calyx. Blocking synaptic output of the biVPN completely abolishes CO2 avoidance in food-deprived flies, but not in fed flies. These findings show that two alternative neural pathways control innate choice behavior, and they are dependent on the animal’s internal state. In addition, they suggest that, during innate choice behavior, the MB serves as an integration site for internal state and olfactory input.

View Publication Page
Pavlopoulos Lab
05/31/05 | Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis.
Pavlopoulos A, Averof M
Proceedings of the National Academy of Sciences of the United States of America. 2005 May 31;102(22):7888-93. doi: 10.1073/pnas.0501101102

The amphipod crustacean Parhyale hawaiensis has been put forward as an attractive organism for evolutionary developmental comparisons, and considerable effort is being invested in isolating developmental genes and studying their expression patterns in this species. The scope of these studies could be significantly expanded by establishing means for genetic manipulation that would enable direct studies of gene functions to be carried out in this species. Here, we report the use of the Minos transposable element for the genetic transformation of P. hawaiensis. Transformed amphipods can be obtained from approximately 30% of surviving individuals injected with both a Minos element carrying the 3xP3-DsRed fluorescent marker and with mRNA encoding the Minos transposase. Integral copies of the transposon are inserted into the host genome and are stably inherited through successive generations. We have used reporter constructs to identify a muscle-specific regulatory element from Parhyale, demonstrating that this transformation vector can be used to test the activity of cis-regulatory elements in this species. The relatively high efficiency of this transgenic methodology opens new opportunities for the direct study of cis-regulatory elements and gene functions in Parhyale, allowing functional studies to be carried out beyond previously established model systems in insects.

View Publication Page
04/18/08 | Ester bonds in prodrugs.
Lavis LD
ACS Chemical Biology. 2008 Apr 18;3(4):203-6. doi: 10.1021/cb800065s

A recent study challenges the oft-held notion that ester bonds in prodrug molecules are cleaved rapidly and completely inside cells by endogenous, nonspecific esterases. Structure-activity relationship studies on acylated sugars reveal that regioisomeric compounds display disparate biological activity, suggesting that ester bonds can persist in a cellular context.

View Publication Page
05/01/20 | Estimating the power of sequence covariation for detecting conserved RNA structure.
Rivas E, Clements J, Eddy SR, Ponty Y
Bioinformatics. 2020 May 01;36(10):3072-76. doi: 10.1093/bioinformatics/btaa080

Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long noncoding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures.

View Publication Page
Fitzgerald Lab
07/12/12 | Estimation theoretic measure of resolution for stochastic localization microscopy.
Fitzgerald JE, Lu J, Schnitzer MJ
Physical review letters. 2012 Jul 27;109(4):048102. doi: 10.1103/PhysRevLett.109.048102

One approach to super-resolution fluorescence microscopy, termed stochastic localization microscopy, relies on the nanometer scale spatial localization of individual fluorescent emitters that stochastically label specific features of the specimen. The precision of emitter localization is an important determinant of the resulting image resolution but is insufficient to specify how well the derived images capture the structure of the specimen. We address this deficiency by considering the inference of specimen structure based on the estimated emitter locations. By using estimation theory, we develop a measure of spatial resolution that jointly depends on the density of the emitter labels, the precision of emitter localization, and prior information regarding the spatial frequency content of the labeled object. The Nyquist criterion does not set the scaling of this measure with emitter number. Given prior information and a fixed emitter labeling density, our resolution measure asymptotes to a finite value as the precision of emitter localization improves. By considering the present experimental capabilities, this asymptotic behavior implies that further resolution improvements require increases in labeling density above typical current values. Our treatment also yields algorithms to enhance reliable image features. Overall, our formalism facilitates the rigorous statistical interpretation of the data produced by stochastic localization imaging techniques.

View Publication Page
06/12/98 | Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway.
Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U
Cell. 1998 Jun 12;93(6):997-1007

Upon exposure to ethanol, Drosophila display behaviors that are similar to ethanol intoxication in rodents and humans. Using an inebriometer to measure ethanol-induced loss of postural control, we identified cheapdate, a mutant with enhanced sensitivity to ethanol. Genetic and molecular analyses revealed that cheapdate is an allele of the memory mutant amnesiac. amnesiac has been postulated to encode a neuropeptide that activates the cAMP pathway. Consistent with this, we find that enhanced ethanol sensitivity of cheapdate can be reversed by treatment with agents that increase cAMP levels or PKA activity. Conversely, genetic or pharmacological reduction in PKA activity results in increased sensitivity to ethanol. Taken together, our results provide functional evidence for the involvement of the cAMP signal transduction pathway in the behavioral response to intoxicating levels of ethanol.

View Publication Page