Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1471-1480 of 3920 results
Gonen Lab
07/13/11 | Fragment-based phase extension for three-dimensional structure determination of membrane proteins by electron crystallography.
Wisedchaisri G, Gonen T
Structure. 2011 Jul 13;19:976-87. doi: 10.1016/j.str.2011.04.008

In electron crystallography, membrane protein structure is determined from two-dimensional crystals where the protein is embedded in a membrane. Once large and well-ordered 2D crystals are grown, one of the bottlenecks in electron crystallography is the collection of image data to directly provide experimental phases to high resolution. Here, we describe an approach to bypass this bottleneck, eliminating the need for high-resolution imaging. We use the strengths of electron crystallography in rapidly obtaining accurate experimental phase information from low-resolution images and accurate high-resolution amplitude information from electron diffraction. The low-resolution experimental phases were used for the placement of α helix fragments and extended to high resolution using phases from the fragments. Phases were further improved by density modifications followed by fragment expansion and structure refinement against the high-resolution diffraction data. Using this approach, structures of three membrane proteins were determined rapidly and accurately to atomic resolution without high-resolution image data.

View Publication Page
Grigorieff Lab
06/07/16 | Frealign: an exploratory tool for single-particle cryo-EM.
Grigorieff N
Methods in Enzymology. 2016 Jun 07:. doi: 10.1016/bs.mie.2016.04.013

Frealign is a software tool designed to process electron microscope images of single molecules and complexes to obtain reconstructions at the highest possible resolution. It provides a number of refinement parameters and options that allow users to tune their refinement to achieve specific goals, such as masking to classify selected regions within a particle, control over the refinement of specific alignment parameters to accommodate various data collection schemes, refinement of pseudosymmetric particles, and generation of initial maps. This chapter provides a general overview of Frealign functions and a more detailed guide to using Frealign in typical scenarios.

View Publication Page
Grigorieff Lab
03/20/14 | Frealix: Model-based refinement of helical filament structures from electron micrographs.
Rohou A, Grigorieff N
Journal of Structural Biology. 2014 Mar 20;186(2):234-44. doi: 10.1016/j.jsb.2014.03.012

The structures of many helical protein filaments can be derived from electron micrographs of their suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable approach treats short segments of these filaments as independent "single particles", yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible filaments. However, in the case of thin and flexible filaments, such as some amyloid-β (Aβ) fibrils, the single-particle approach may fail because helical segments can be curved or otherwise distorted and their alignment can be inaccurate due to low contrast in the micrographs. We developed new software called Frealix that allows the use of arbitrarily short filament segments during alignment to approximate even high curvatures. All segments in a filament are aligned simultaneously with constraints that ensure that they connect to each other in space to form a continuous helical structure. In this paper, we describe the algorithm and benchmark it against datasets of Aβ(1-40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the case of TMV, our algorithm achieves similar results to single-particle analysis. In the case of Aβ(1-40) fibrils, we match the previously-obtained resolution but we are also able to obtain reliable alignments and \~{}8-Å reconstructions from curved filaments. Our algorithm also offers a detailed characterization of filament deformations in three dimensions and enables a critical evaluation of the worm-like chain model for biological filaments.

View Publication Page
10/19/15 | Free RNA polymerase in Escherichia coli.
Patrick M, Dennis PP, Ehrenberg M, Bremer H
Biochimie. 2015 Oct 19;119:80-91. doi: 10.1016/j.biochi.2015.10.015

The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].

View Publication Page
05/18/20 | Freeze-frame imaging of synaptic activity using SynTagMA.
Perez-Alvarez A, Fearey BC, Schulze C, O'Toole RJ, Moeyaert B, Mohr MA, Arganda-Carreras I, Yang W, Wiegert JS, Schreiter ER, Gee CE, Hoppa MB, Oertner TG
Nature Communications. 2020 May 18;11(1):2464. doi: 10.1038/s41467-020-16315-4

Information within the brain travels from neuron to neuron across synapses. At any given moment, only a few synapses within billions will be active and are thought to transmit key information about the environment, a behavior being executed or memory being recalled. Here we present SynTagMA, which marks active synapses within a ~2 s time window. Upon violet illumination, the genetically expressed tag converts from green to red fluorescence if bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we developed an analysis program that automatically identifies and tracks the fluorescence of thousands of individual synapses in tissue. Together, these tools provide a high throughput method for repeatedly mapping active synapses in vitro and in vivo.

View Publication Page
Druckmann Lab
06/04/15 | From a meso- to micro-scale connectome: array tomography and mGRASP.
Rah J, Feng L, Druckmann S, Lee H, Kim J
Frontiers in Neuroanatomy. 2015 Jun 04;9:78. doi: 10.3389/fnana.2015.00078

Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors.

View Publication Page
Svoboda Lab
01/01/11 | From cudgel to scalpel: toward precise neural control with optogenetics.
Peron S, Svoboda K
Nature Methods. 2011 Jan;8(1):30-4. doi: 10.1038/nmeth.f.325

Optogenetics is routinely used to activate and inactivate genetically defined neuronal populations in vivo. A second optogenetic revolution will occur when spatially distributed and sparse neural assemblies can be precisely manipulated in behaving animals.

View Publication Page
08/15/12 | From distributed resources to limited slots in multiple-item working memory: a spiking network model with normalization.
Wei Z, Wang X, Wang D
Journal of Neuroscience. 2012 Aug 15;32(33):11228-40. doi: 10.1523/​JNEUROSCI.0735-12.2012

Recent behavioral studies have given rise to two contrasting models for limited working memory capacity: a "discrete-slot" model in which memory items are stored in a limited number of slots, and a "shared-resource" model in which the neural representation of items is distributed across a limited pool of resources. To elucidate the underlying neural processes, we investigated a continuous network model for working memory of an analog feature. Our model network fundamentally operates with a shared resource mechanism, and stimuli in cue arrays are encoded by a distributed neural population. On the other hand, the network dynamics and performance are also consistent with the discrete-slot model, because multiple objects are maintained by distinct localized population persistent activity patterns (bump attractors). We identified two phenomena of recurrent circuit dynamics that give rise to limited working memory capacity. As the working memory load increases, a localized persistent activity bump may either fade out (so the memory of the corresponding item is lost) or merge with another nearby bump (hence the resolution of mnemonic representation for the merged items becomes blurred). We identified specific dependences of these two phenomena on the strength and tuning of recurrent synaptic excitation, as well as network normalization: the overall population activity is invariant to set size and delay duration; therefore, a constant neural resource is shared by and dynamically allocated to the memorized items. We demonstrate that the model reproduces salient observations predicted by both discrete-slot and shared-resource models, and propose testable predictions of the merging phenomenon.

View Publication Page
Gonen Lab
03/01/18 | From electron crystallography of 2D crystals to MicroED of 3D crystals.
Martynowycz MW, Gonen T
Current Opinion in Colloid & Interface Science . 2018 Mar;34:9-16. doi: 10.1016/j.cocis.2018.01.010

Electron crystallography is widespread in material science applications, but for biological samples its use has been restricted to a handful of examples where two-dimensional (2D) crystals or helical samples were studied either by electron diffraction and/or imaging. Electron crystallography in cryoEM, was developed in the mid-1970s and used to solve the structure of several membrane proteins and some soluble proteins. In 2013, a new method for cryoEM was unveiled and named Micro-crystal Electron Diffraction, or MicroED, which is essentially three-dimensional (3D) electron crystallography of microscopic crystals. This method uses truly 3D crystals, that are about a billion times smaller than those typically used for X-ray crystallography, for electron diffraction studies. There are several important differences and some similarities between electron crystallography of 2D crystals and MicroED. In this review, we describe the development of these techniques, their similarities and differences, and offer our opinion of future directions in both fields.

View Publication Page
01/23/15 | From intracellular signaling to population oscillations: bridging size- and time-scales in collective behavior.
Sgro AE, Schwab DJ, Noorbakhsh J, Mestler T, Mehta P, Gregor T
Mol Syst Biol. 01/2015;11(1):779. doi: 10.15252/msb.20145352

Collective behavior in cellular populations is coordinated by biochemical signaling networks within individual cells. Connecting the dynamics of these intracellular networks to the population phenomena they control poses a considerable challenge because of network complexity and our limited knowledge of kinetic parameters. However, from physical systems, we know that behavioral changes in the individual constituents of a collectively behaving system occur in a limited number of well-defined classes, and these can be described using simple models. Here, we apply such an approach to the emergence of collective oscillations in cellular populations of the social amoeba Dictyostelium discoideum. Through direct tests of our model with quantitative in vivo measurements of single-cell and population signaling dynamics, we show how a simple model can effectively describe a complex molecular signaling network at multiple size and temporal scales. The model predicts novel noise-driven single-cell and population-level signaling phenomena that we then experimentally observe. Our results suggest that like physical systems, collective behavior in biology may be universal and described using simple mathematical models.

View Publication Page