Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 1561-1570 of 3920 results
02/01/10 | Genome sequence of the pea aphid Acyrthosiphon pisum.
PLoS Biology. 2010 Feb;8(2):e1000313. doi: 10.1371/journal.pbio.1000313

Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

View Publication Page
04/25/14 | Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis.
International Glossina Genome Initiative
Science. 2014 Apr 25;344(6182):380-6. doi: 10.1126/science.1249656

Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.

View Publication Page
04/26/11 | Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption.
Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D, Desrivières S, Aliev FA, Khan AA, Amin N, Aulchenko YS, Bakalkin G, Bakker SJ, Balkau B, Beulens JW, Bilbao A, de Boer RA, Beury D, Bots ML, Breetvelt EJ, Cauchi S, Cavalcanti-Proença C, Chambers JC, Clarke T, Dahmen N, de Geus EJ, Dick D, Ducci F, Easton A, Edenberg HJ, Esko T, Esk T, Fernández-Medarde A, Foroud T, Freimer NB, Girault J, Grobbee DE, Guarrera S, Gudbjartsson DF, Hartikainen A, Heath AC, Hesselbrock V, Hofman A, Hottenga J, Isohanni MK, Kaprio J, Khaw K, Kuehnel B, Laitinen J, Lobbens S, Luan J, Mangino M, Maroteaux M, Matullo G, McCarthy MI, Mueller C, Navis G, Numans ME, Núñez A, Nyholt DR, Onland-Moret CN, Oostra BA, O'Reilly PF, Palkovits M, Penninx BW, Polidoro S, Pouta A, Prokopenko I, Ricceri F, Santos E, Smit JH, Soranzo N, Song K, Sovio U, Stumvoll M, Surakk I, Thorgeirsson TE, Thorsteinsdottir U, Troakes C, Tyrfingsson T, Tönjes A, Uiterwaal CS, Uitterlinden AG, van der Harst P, van der Schouw YT, Staehlin O, Vogelzangs N, Vollenweider P, Waeber G, Wareham NJ, Waterworth DM, Whitfield JB, Wichmann EH, Willemsen G, Witteman JC, Yuan X, Zhai G, Zhao JH, Zhang W, Martin NG, Metspalu A, Doering A, Scott J, Spector TD, Loos RJ, Boomsma DI, Mooser V, Peltonen L, Stefansson K, van Duijn CM, Vineis P, Sommer WH, Kooner JS, Spanagel R, Heberlein UA, Jarvelin M, Elliott P
Proceedings of the National Academy of Sciences of the United States of America. 2011 Apr 26;108(17):7119-24. doi: 10.1073/pnas.1017288108

Alcohol consumption is a moderately heritable trait, but the genetic basis in humans is largely unknown, despite its clinical and societal importance. We report a genome-wide association study meta-analysis of ∼2.5 million directly genotyped or imputed SNPs with alcohol consumption (gram per day per kilogram body weight) among 12 population-based samples of European ancestry, comprising 26,316 individuals, with replication genotyping in an additional 21,185 individuals. SNP rs6943555 in autism susceptibility candidate 2 gene (AUTS2) was associated with alcohol consumption at genome-wide significance (P = 4 × 10(-8) to P = 4 × 10(-9)). We found a genotype-specific expression of AUTS2 in 96 human prefrontal cortex samples (P = 0.026) and significant (P < 0.017) differences in expression of AUTS2 in whole-brain extracts of mice selected for differences in voluntary alcohol consumption. Down-regulation of an AUTS2 homolog caused reduced alcohol sensitivity in Drosophila (P < 0.001). Our finding of a regulator of alcohol consumption adds knowledge to our understanding of genetic mechanisms influencing alcohol drinking behavior.

View Publication Page
Tjian Lab
08/25/15 | Genome-wide errant targeting by Hairy.
Kok K, Ay A, Li LM, Arnosti DN
eLife. 2015 Aug 25;4:. doi: 10.7554/eLife.06394

Metazoan transcriptional repressors regulate chromatin through diverse histone modifications. Contributions of individual factors to the chromatin landscape in development is difficult to establish, as global surveys reflect multiple changes in regulators. Therefore, we studied the conserved Hairy/Enhancer of Split family repressor Hairy, analyzing histone marks and gene expression in Drosophila embryos. This long-range repressor mediates histone acetylation and methylation in large blocks, with highly context-specific effects on target genes. Most strikingly, Hairy exhibits biochemical activity on many loci that are uncoupled to changes in gene expression. Rather than representing inert binding sites, as suggested for many eukaryotic factors, many regions are targeted errantly by Hairy to modify the chromatin landscape. Our findings emphasize that identification of active cis-regulatory elements must extend beyond the survey of prototypical chromatin marks. We speculate that this errant activity may provide a path for creation of new regulatory elements, facilitating the evolution of novel transcriptional circuits.

View Publication Page
04/01/14 | Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of nitric oxide synthase and Fd59a/Fox-D.
Lacin H, Rusch J, Yeh RT, Fujioka M, Wilson BA, Zhu Y, Robie AA, Mistry H, Wang T, Jaynes JB, Skeath JB
Developmental Biology. 2014 Apr 1;388:117-33. doi: 10.1016/j.ydbio.2014.01.029

Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9(+) neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9(+) neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors. Through the parallel use of micro-array gene expression profiling and the Dam-ID method, we searched for Hb9-regulated genes, uncovering transcription factors as the most over-represented class of genes regulated by Hb9 (and Nkx6) in the CNS. By a nearly ten-to-one ratio, Hb9 represses rather than activates transcription factors, highlighting transcriptional repression of other transcription factors as a core mechanism by which Hb9 governs neuronal determination. From the small set of genes activated by Hb9, we characterized the expression and function of two - fd59a/foxd, which encodes a transcription factor, and Nitric oxide synthase. Under standard lab conditions, both genes are dispensable for Drosophila development, but Nos appears to inhibit hyper-active behavior and fd59a appears to act in octopaminergic neurons to control egg-laying behavior. Together our data clarify the mechanisms through which Hb9 governs neuronal specification and differentiation and provide an initial characterization of the expression and function of Nos and fd59a in the Drosophila CNS.

View Publication Page
06/17/20 | Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells.
Ochiai H, Hayashi T, Umeda M, Yoshimura M, Harada A, Shimizu Y, Nakano K, Saitoh N, Liu Z, Yamamoto T, Okamura T, Ohkawa Y, Kimura H, Nikaido I
Science Advances. 2020 Jun 17;6(25):eaaz6699. doi: 10.1126/sciadv.aaz6699

Transcriptional bursting is the stochastic activation and inactivation of promoters, contributing to cell-to-cell heterogeneity in gene expression. However, the mechanism underlying the regulation of transcriptional bursting kinetics (burst size and frequency) in mammalian cells remains elusive. In this study, we performed single-cell RNA sequencing to analyze the intrinsic noise and mRNA levels for elucidating the transcriptional bursting kinetics in mouse embryonic stem cells. Informatics analyses and functional assays revealed that transcriptional bursting kinetics was regulated by a combination of promoter- and gene body-binding proteins, including the polycomb repressive complex 2 and transcription elongation factors. Furthermore, large-scale CRISPR-Cas9-based screening identified that the Akt/MAPK signaling pathway regulated bursting kinetics by modulating transcription elongation efficiency. These results uncovered the key molecular mechanisms underlying transcriptional bursting and cell-to-cell gene expression noise in mammalian cells.

View Publication Page
10/19/07 | Genome-wide screen for modifiers of ataxin-3 neurodegeneration in Drosophila.
Bilen J, Bonini NM
PLoS Genetics. 2007 Oct 19;3(10):1950-64. doi: 10.1371/journal.pgen.0030177

Spinocerebellar ataxia type-3 (SCA3) is among the most common dominantly inherited ataxias, and is one of nine devastating human neurodegenerative diseases caused by the expansion of a CAG repeat encoding glutamine within the gene. The polyglutamine domain confers toxicity on the protein Ataxin-3 leading to neuronal dysfunction and loss. Although modifiers of polyglutamine toxicity have been identified, little is known concerning how the modifiers function mechanistically to affect toxicity. To reveal insight into spinocerebellar ataxia type-3, we performed a genetic screen in Drosophila with pathogenic Ataxin-3-induced neurodegeneration and identified 25 modifiers defining 18 genes. Despite a variety of predicted molecular activities, biological analysis indicated that the modifiers affected protein misfolding. Detailed mechanistic studies revealed that some modifiers affected protein accumulation in a manner dependent on the proteasome, whereas others affected autophagy. Select modifiers of Ataxin-3 also affected tau, revealing common pathways between degeneration due to distinct human neurotoxic proteins. These findings provide new insight into molecular pathways of polyQ toxicity, defining novel targets for promoting neuronal survival in human neurodegenerative disease.

View Publication Page
06/11/08 | Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning.
Hoopfer ED, Penton A, Watts RJ, Luo L
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Jun 11;28(24):6092-103. doi: 10.1523/JNEUROSCI.0677-08.2008

Drosophila mushroom body (MB) gamma neurons undergo axon pruning during metamorphosis through a process of localized degeneration of specific axon branches. Developmental axon degeneration is initiated by the steroid hormone ecdysone, acting through a nuclear receptor complex composed of USP (ultraspiracle) and EcRB1 (ecdysone receptor B1) to regulate gene expression in MB gamma neurons. To identify ecdysone-dependent gene expression changes in MB gamma neurons at the onset of axon pruning, we use laser capture microdissection to isolate wild-type and mutant MB neurons in which EcR (ecdysone receptor) activity is genetically blocked, and analyze expression changes by microarray. We identify several molecular pathways that are regulated in MB neurons by ecdysone. The most striking observation is the upregulation of genes involved in the UPS (ubiquitin-proteasome system), which is cell autonomously required for gamma neuron pruning. In addition, we characterize the function of Boule, an evolutionarily conserved RNA-binding protein previously implicated in spermatogenesis in flies and vertebrates. boule expression is downregulated by ecdysone in MB neurons at the onset of pruning, and forced expression of Boule in MB gamma neurons is sufficient to inhibit axon pruning. This activity is dependent on the RNA-binding domain of Boule and a conserved DAZ (deleted in azoospermia) domain implicated in interactions with other RNA-binding proteins. However, loss of Boule does not result in obvious defects in axon pruning or morphogenesis of MB neurons, suggesting that it acts redundantly with other ecdyonse-regulated genes. We propose a novel function for Boule in the CNS as a negative regulator of developmental axon pruning.

View Publication Page
09/21/17 | Genomic probes.
Singer RH, Deng W, Lionnet T
USPTO. 2017 Sep 21;A1:

Labeled probes, and methods of use thereof, comprise a Cas polypeptide conjugated to gRNA that is specific for target nucleic acid sequences, including genomic DNA sequences. The probes and methods can be used to label nucleic acid sequences without global DNA denaturation. The presently-disclosed subject matter meets some or all of the above identified needs, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

View Publication Page
05/14/15 | Genomic signatures of evolutionary transitions from solitary to group living.
Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RF, Glastad KM, Hunt BG, Goodisman MA, Hauser F, Grimmelikhuijzen CJ, Pinheiro DG, Nunes FM, Soares MP, Tanaka ÉD, Simões ZL, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G
Science. 2015 May 14:. doi: 10.1126/science.aaa4788

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of ten bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.

View Publication Page