Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2301-2310 of 3920 results
08/17/18 | mTOR-dependent phosphorylation controls TFEB nuclear export.
Napolitano G, Esposito A, Choi H, Matarese M, Benedetti V, Di Malta C, Monfregola J, Medina DL, Lippincott-Schwartz J, Ballabio A
Nature Communications. 2018 Aug 17;9(1):3312. doi: 10.1038/s41467-018-05862-6

During starvation the transcriptional activation of catabolic processes is induced by the nuclear translocation and consequent activation of transcription factor EB (TFEB), a master modulator of autophagy and lysosomal biogenesis. However, how TFEB is inactivated upon nutrient refeeding is currently unknown. Here we show that TFEB subcellular localization is dynamically controlled by its continuous shuttling between the cytosol and the nucleus, with the nuclear export representing a limiting step. TFEB nuclear export is mediated by CRM1 and is modulated by nutrient availability via mTOR-dependent hierarchical multisite phosphorylation of serines S142 and S138, which are localized in proximity of a nuclear export signal (NES). Our data on TFEB nucleo-cytoplasmic shuttling suggest an unpredicted role of mTOR in nuclear export.

View Publication Page
Magee LabHarris Lab
06/01/10 | Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.
Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsáki G, Magee JC
The European Journal of Neuroscience. 2010 Jun;31:2279-91. doi: 10.1002/cbic.201000254

Recordings of large neuronal ensembles and neural stimulation of high spatial and temporal precision are important requisites for studying the real-time dynamics of neural networks. Multiple-shank silicon probes enable large-scale monitoring of individual neurons. Optical stimulation of genetically targeted neurons expressing light-sensitive channels or other fast (milliseconds) actuators offers the means for controlled perturbation of local circuits. Here we describe a method to equip the shanks of silicon probes with micron-scale light guides for allowing the simultaneous use of the two approaches. We then show illustrative examples of how these compact hybrid electrodes can be used in probing local circuits in behaving rats and mice. A key advantage of these devices is the enhanced spatial precision of stimulation that is achieved by delivering light close to the recording sites of the probe. When paired with the expression of light-sensitive actuators within genetically specified neuronal populations, these devices allow the relatively straightforward and interpretable manipulation of network activity.

View Publication Page
03/06/11 | Multi-camera real-time three-dimensional tracking of multiple flying animals.
Straw AD, Branson K, Neumann TR, Dickinson MH
Journal of the Royal Society, Interface. 2011 Mar 6;8(56):395-409. doi: 10.1098/rsif.2010.0230

Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in real time–with minimal latency–opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behaviour. Here, we describe a system capable of tracking the three-dimensional position and body orientation of animals such as flies and birds. The system operates with less than 40 ms latency and can track multiple animals simultaneously. To achieve these results, a multi-target tracking algorithm was developed based on the extended Kalman filter and the nearest neighbour standard filter data association algorithm. In one implementation, an 11-camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behaviour of freely flying animals. If combined with other techniques, such as ’virtual reality’-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.

View Publication Page
01/31/13 | Multi-channel acoustic recording and automated analysis of Drosophila courtship songs.
Arthur BJ, Sunayama-Morita T, Coen P, Murthy M, Stern DL
BMC Biology. 2013 Jan 31;11:11. doi: 10.1186/1741-7007-11-11

Drosophila melanogaster has served as a powerful model system for genetic studies of courtship songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of courting flies as well as software for automated segmentation of songs.

View Publication Page
07/11/19 | Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding.
Boersma S, Khuperkar D, Verhagen BM, Sonneveld S, Grimm JB, Lavis LD, Tanenbaum ME
Cell. 2019 Jul 11;178(2):458-72. doi: 10.1016/j.cell.2019.05.001

mRNA translation is a key step in decoding genetic information. Genetic decoding is surprisingly heterogeneous, as multiple distinct polypeptides can be synthesized from a single mRNA sequence. To study translational heterogeneity, we developed the MoonTag, a new fluorescence labeling system to visualize translation of single mRNAs. When combined with the orthogonal SunTag system, the MoonTag enables dual readouts of translation, greatly expanding the possibilities to interrogate complex translational heterogeneity. By placing MoonTag and SunTag sequences in different translation reading frames, each driven by distinct translation start sites, start site selection of individual ribosomes can be visualized in real-time. We find that start site selection is largely stochastic, but that the probability of using a particular start site differs among mRNA molecules, and can be dynamically regulated over time. Together, this study provides key insights into translation start site selection heterogeneity, and provides a powerful toolbox to visualize complex translation dynamics.

View Publication Page
08/06/23 | Multi-day Neuron Tracking in High Density Electrophysiology Recordings using EMD
Augustine Xiaoran Yuan , Jennifer Colonell , Anna Lebedeva , Adam Charles , Timothy Harris
bioRxiv. 2023 Aug 06:. doi: 10.1101/2023.08.03.551724

Accurate tracking of the same neurons across multiple days is crucial for studying changes in neuronal activity during learning and adaptation. New advances in high density extracellular electrophysiology recording probes, such as Neuropixels, provide a promising avenue to accomplish this goal. Identifying the same neurons in multiple recordings is, however, complicated by non-rigid movement of the tissue relative to the recording sites (drift) and loss of signal from some neurons. Here we propose a neuron tracking method that can identify the same cells independent of firing statistics, which are used by most existing methods. Our method is based on between-day non-rigid alignment of spike sorted clusters. We verified the same cell identify using measured visual receptive fields. This method succeeds on datasets separated from one to 47 days, with an 86% average recovery rate.

View Publication Page
08/07/08 | Multi-modal target tracking using heterogeneous sensor networks.
Kushwaha M, Amundson I, Volgyesi P, Ahammad P, Simon G, Koutsoukos X, Ledeczi A, Sastry S
17th International Conference on Computer Communications and Networks. 2008 Aug 7:

The paper describes a target tracking system running on a Heterogeneous Sensor Network (HSN) and presents results gathered from a realistic deployment. The system fuses audio direction of arrival data from mote class devices and object detection measurements from embedded PCs equipped with cameras. The acoustic sensor nodes perform beamforming and measure the energy as a function of the angle. The camera nodes detect moving objects and estimate their angle. The sensor detections are sent to a centralized sensor fusion node via a combination of two wireless networks. The novelty of our system is the unique combination of target tracking methods customized for the application at hand and their implementation on an actual HSN platform.

View Publication Page
Kainmueller Lab
07/20/09 | Multi-object segmentation of head bones.
Kainmueller D, Lamecker H, Seim H, Zachow S
MIDAS Journal. 2009 Jul 20:

We present a fully automatic method for 3D segmentation of the mandibular bone from CT data. The method includes an adaptation of statistical shape models of the mandible, the skull base and the midfacial bones, followed by a simultaneous graph-based optimization of adjacent deformable models. The adaptation of the models to the image data is performed according to a heuristic model of the typical intensity distribution in the vincinity of the bone boundary, with special focus on an accurate discrimination of adjacent bones in joint regions. An evaluation of our method based on 18 CT scans shows that a manual correction of the automatic segmentations is not necessary in approx. 60% of the axial slices that contain the mandible.

View Publication Page
Kainmueller Lab
01/01/09 | Multi-object segmentation with coupled deformable models.
Kainmueller D, Lamecker H, Zachow S
Annals of the British Machine Vision Association. 2009;2009(5):1-10

For biomechanical simulations, the segmentation of multiple adjacent anatomical struc- tures from medical image data is often required. If adjacent structures are barely dis- tinguishable in image data, in general automatic segmentation methods for single struc- tures do not yield sufficiently accurate results. To improve segmentation accuracy in these cases, knowledge about adjacent structures must be exploited. Optimal graph searching (graph cuts) based on deformable surface models allows for a simultaneous segmentation of multiple adjacent objects. However, this method requires a correspon- dence relation between vertices of adjacent surface meshes. Line segments, each con- taining two corresponding vertices, may then serve as shared displacement directions in the segmentation process. In this paper we propose a scheme for constructing a corre- spondence relation in adjacent regions of two arbitrary surfaces. This correspondence relation implies shared displacement directions that we apply for segmentation with de- formable surfaces. Here, overlap of the surfaces is guaranteed not to occur. We show correspondence relations for regions on a femoral head and acetabulum and other adja- cent structures, as well as an evaluation of segmentation results on 50 ct images of the hip joint. 

View Publication Page
11/17/20 | Multi-regional circuits underlying visually guided decision-making in Drosophila.
Cheong H, Siwanowicz I, Card GM
Current Opinion in Neurobiology. 2020 Nov 17;65:77-87. doi: 10.1016/j.conb.2020.10.010

Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.

View Publication Page