Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2491-2500 of 3920 results
03/05/15 | New insights and system designs for temporally focused multiphoton optogenetics.
Mayblum T, Schejter A, Dana H, Shoham S
Proceedings of SPIE. 2015 Mar 5;9329:932928. doi: 10.1117/12.2078678

Temporal focusing (TF) multiphoton systems constitute a powerful solution for cellular resolution optogenetic stimulation and recording in three-dimensional, scattering tissue. Here, we address two fundamental aspects in the design of such systems: first, we examine the design of TF systems with specific optical sectioning by comparatively analyzing previously published results. Next, we develop a solution for obtaining TF in a flexible three-dimensional pattern of cellmatched focal spots. Our solution employs spatio-temporal focusing (SSTF) in a unique optical system design that can be integrated before essentially any multiphoton imaging or stimulation system.

View Publication Page
11/13/18 | New optical probes bring dopamine to light.
Beyene AG, Delevich K, Yang SJ, Landry MP
Biochemistry. 2018 Nov 13;57(45):6379-6381. doi: 10.1021/acs.biochem.8b00883

Chemical signaling between neurons in the brain can be divided into two major categories: fast synaptic transmission and neuromodulation. Fast synaptic transmission, mediated by amino acids such as glutamate and GABA, occurs on millisecond time scales and results in the influx of ions through ligand-gated ion channels on postsynaptic neurons (Figure 1A). Electrophysiological and optical imaging tools, including genetically encoded voltage indicators, have enabled neuroscientists to link cause (neurotransmitter release) and effect (membrane polarization) of synaptic transmission in time and space. Unlike classical neurotransmitters, neuromodulators do not produce immediate electrical effects that excite or inhibit target neurons. Instead, neuromodulators tune the intrinsic or synaptic properties of neurons, most commonly through interaction with G-protein-coupled receptors (GPCRs) (Figure 1B). Neuromodulators can escape the synaptic cleft and diffuse broadly, allowing them to influence the activity of many neurons in a state-dependent manner. Therefore, the spatial component of neuromodulator flux is fundamentally important. However, the temporal and/or spatial limitations of techniques classically used to study neuromodulation, such as microdialysis and fast-scan cyclic voltammetry (FSCV), make it difficult to interpret how neuromodulator release affects the plasticity or function of target neuronal populations on a moment-to-moment basis. Therefore, tools that can detect neuromodulators with high spatiotemporal resolution are critical for understanding their impact on neural computations that control behavior in health and disease.

View Publication Page
03/01/13 | New technologies in imaging.
Galbraith CG, Keller PJ, Nogales E
Molecular Biology of the Cell. 2013 Mar;24(6):669. doi: 10.1091/mbc.E12-12-0867

Visualization of cellular and molecular processes is an indispensable tool for cell biologists, and innovations in microscopy methods unfailingly lead to new biological discoveries. Today, light microscopy (LM) provides ever-higher spatial and temporal resolution and visualization of biological process over enormous ranges. Electron microscopy (EM) is moving into the atomic resolution regime and allowing cellular analyses that are more physiological and sophisticated in scope. Importantly, much is being gained by combining multiple approaches, (e.g., LM and EM) to take advantage of their complementary strengths. The advent of high-throughput microscopies has led to a common need for sophisticated computational methods to quantitatively analyze huge amounts of data and translate images into new biological insights.

View Publication Page
09/01/11 | New tools for the analysis of glial cell biology in Drosophila.
Awasaki T, Lee T
Glia. 2011 Sep;59(9):1377-86. doi: 10.1002/glia.21133

Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila.

View Publication Page
02/01/15 | Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing.
Chen Y, Frazzitta AE, Litvintseva AP, Fang C, Mitchell TG, Springer DJ, Ding Y, Yuan G, Perfect JR
Fungal Genetics and Biology. 2015 Feb;75:64-71. doi: 10.1016/j.fgb.2015.01.005

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible, and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results. The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus neoformans.

View Publication Page
Fetter LabSimpson Lab
09/20/07 | NF-κB, IκB, and IRAK control glutamate receptor density at the Drosophila NMJ.
Heckscher ES, Fetter RD, Marek KW, Albin SD, Davis GW
Neuron. 2007 Sep 20;55(6):859-73. doi: 10.1016/j.neuron.2007.08.005

NF-κB signaling has been implicated in neurodegenerative disease, epilepsy, and neuronal plasticity. However, the cellular and molecular activity of NF-κB signaling within the nervous system remains to be clearly defined. Here, we show that the NF-κB and IκB homologs Dorsal and Cactus surround postsynaptic glutamate receptor (GluR) clusters at the Drosophila NMJ. We then show that mutations in dorsal, cactus, and IRAK/pelle kinase specifically impair GluR levels, assayed immunohistochemically and electrophysiologically, without affecting NMJ growth, the size of the postsynaptic density, or homeostatic plasticity. Additional genetic experiments support the conclusion that cactus functions in concert with, rather than in opposition to, dorsal and pelle in this process. Finally, we provide evidence that Dorsal and Cactus act posttranscriptionally, outside the nucleus, to control GluR density. Based upon our data we speculate that Dorsal, Cactus, and Pelle could function together, locally at the postsynaptic density, to specify GluR levels.

View Publication Page
07/17/13 | NGL-2 Regulates Pathway-Specific Neurite Growth and Lamination, Synapse Formation, and Signal Transmission in the Retina
Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D
Journal of Neuroscience. May-07-2014;33(29):11949 - 11959. doi: 10.1523/JNEUROSCI.1521-13.2013

Parallel processing is an organizing principle of many neural circuits. In the retina, parallel neuronal pathways process signals from rod and cone photoreceptors and support vision over a wide range of light levels. Toward this end, rods and cones form triad synapses with dendrites of distinct bipolar cell types, and the axons or dendrites, respectively, of horizontal cells (HCs). The molecular cues that promote the formation of specific neuronal pathways remain largely unknown. Here, we discover that developing and mature HCs express the leucine-rich repeat (LRR)-containing protein netrin-G ligand 2 (NGL-2). NGL-2 localizes selectively to the tips of HC axons, which form reciprocal connections with rods. In mice with null mutations in Ngl-2 (Ngl-2⁻/⁻), many branches of HC axons fail to stratify in the outer plexiform layer (OPL) and invade the outer nuclear layer. In addition, HC axons expand lateral territories and increase coverage of the OPL, but establish fewer synapses with rods. NGL-2 can form transsynaptic adhesion complexes with netrin-G2, which we show to be expressed by photoreceptors. In Ngl-2⁻/⁻ mice, we find specific defects in the assembly of presynaptic ribbons in rods, indicating that reverse signaling of complexes involving NGL-2 regulates presynaptic maturation. The development of HC dendrites and triad synapses of cone photoreceptors proceeds normally in the absence of NGL-2 and in vivo electrophysiology reveals selective defects in rod-mediated signal transmission in Ngl-2⁻/⁻ mice. Thus, our results identify NGL-2 as a central component of pathway-specific development in the outer retina.

View Publication Page
Eddy/Rivas Lab
10/01/13 | nhmmer: DNA homology search with profile HMMs.
Wheeler TJ, Eddy SR
Bioinformatics. 2013 Oct 1;29:2487-9. doi: 10.1093/bioinformatics/btt403

SUMMARY: Sequence database searches are an essential part of molecular biology, providing information about the function and evolutionary history of proteins, RNA molecules and DNA sequence elements. We present a tool for DNA/DNA sequence comparison that is built on the HMMER framework, which applies probabilistic inference methods based on hidden Markov models to the problem of homology search. This tool, called nhmmer, enables improved detection of remote DNA homologs, and has been used in combination with Dfam and RepeatMasker to improve annotation of transposable elements in the human genome. AVAILABILITY: nhmmer is a part of the new HMMER3.1 release. Source code and documentation can be downloaded from http://hmmer.org. HMMER3.1 is freely licensed under the GNU GPLv3 and should be portable to any POSIX-compliant operating system, including Linux and Mac OS/X. CONTACT: wheelert@janelia.hhmi.org.

View Publication Page
02/26/20 | Nicotine exposure and neuronal activity regulate Golgi membrane dispersal and distribution
Govind AP, Jeyifous O, Russell TA, Vaasjo LO, Yi Z, Weigel AV, Newell L, Koranda JL, Singh K, Valbuena F, Glick BS, Mukherjee J, Lippincott-Schwartz J, Zhuang X, Green WN
bioRxiv. 2020 Feb 26:

How nicotine exposure produces long-lasting changes that remodel neural circuits with addiction is unknown. Here, we report that long-term nicotine exposure alters the trafficking of α4β2-type nicotinic acetylcholine receptors (α4β2Rs) by dispersing and redistributing the Golgi apparatus. In cultured neurons, dispersed Golgi membranes were distributed throughout somata, dendrites and axons. Small, mobile vesicles in dendrites and axons lacked standard Golgi markers and were identified by other Golgi enzymes that modify glycans. Nicotine exposure increased levels of dispersed Golgi membranes, which required α4β2R expression. Similar nicotine-induced changes occurred in vivo at dopaminergic neurons at mouse nucleus accumbens terminals, consistent with these events contributing to nicotine’s addictive effects. Characterization in vitro demonstrated that dispersal was reversible, that dispersed Golgi membranes were functional, and that membranes were heterogenous in size, with smaller vesicles emerging from larger “ministacks”, similar to Golgi dispersal induced by nocadazole. Protocols that increased cultured neuronal synaptic excitability also increased Golgi dispersal, without the requirement of α4β2R expression. Our findings reveal novel activity- and nicotine-dependent changes in neuronal intracellular morphology. These changes regulate levels and location of dispersed Golgi membranes at dendrites and axons, which function in local trafficking at subdomains.

View Publication Page
05/22/18 | Nicotinic cholinergic receptors in VTA glutamate neurons modulate excitatory transmission.
Yan Y, Peng C, Arvin MC, Jin X, Kim VJ, Ramsey MD, Wang Y, Banala S, Wokosin DL, McIntosh JM, Lavis LD, Drenan RM
Cell Reports. 2018 May 22;23(8):2236-2244. doi: 10.1016/j.celrep.2018.04.062

Ventral tegmental area (VTA) glutamate neurons are important components of reward circuitry, but whether they are subject to cholinergic modulation is unknown. To study this, we used molecular, physiological, and photostimulation techniques to examine nicotinic acetylcholine receptors (nAChRs) in VTA glutamate neurons. Cells in the medial VTA, where glutamate neurons are enriched, are responsive to acetylcholine (ACh) released from cholinergic axons. VTA VGLUT2 neurons express mRNA and protein subunits known to comprise heteromeric nAChRs. Electrophysiology, coupled with two-photon microscopy and laser flash photolysis of photoactivatable nicotine, was used to demonstrate nAChR functional activity in the somatodendritic subcellular compartment of VTA VGLUT2 neurons. Finally, optogenetic isolation of intrinsic VTA glutamatergic microcircuits along with gene-editing techniques demonstrated that nicotine potently modulates excitatory transmission within the VTA via heteromeric nAChRs. These results indicate that VTA glutamate neurons are modulated by cholinergic mechanisms and participate in the cascade of physiological responses to nicotine exposure.

View Publication Page