Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2641-2650 of 3920 results
Sternson Lab
12/05/13 | Parallel, redundant circuit organization for homeostatic control of feeding behavior.
Betley JN, Cao ZF, Ritola KD, Sternson SM
Cell. 2013 Dec 5;155(6):1337-50. doi: 10.1016/j.cell.2013.11.002

Neural circuits for essential natural behaviors are shaped by selective pressure to coordinate reliable execution of flexible goal-directed actions. However, the structural and functional organization of survival-oriented circuits is poorly understood due to exceptionally complex neuroanatomy. This is exemplified by AGRP neurons, which are a molecularly defined population that is sufficient to rapidly coordinate voracious food seeking and consumption behaviors. Here, we use cell-type-specific techniques for neural circuit manipulation and projection-specific anatomical analysis to examine the organization of this critical homeostatic circuit that regulates feeding. We show that AGRP neuronal circuits use a segregated, parallel, and redundant output configuration. AGRP neuron axon projections that target different brain regions originate from distinct subpopulations, several of which are sufficient to independently evoke feeding. The concerted anatomical and functional analysis of AGRP neuron projection populations reveals a constellation of core forebrain nodes, which are part of an extended circuit that mediates feeding behavior.

View Publication Page
04/25/19 | Parametric amplification of reversible transverse susceptibility in single domain magnetic nanoparticles.
El Bidweihy H, Smith RD, Barbic M
AIP Advances. 2019 Apr 25;9:045031. doi: 10.1063/1.5079980

We propose, model, and experimentally demonstrate the enhancement of reversible transverse susceptibility in single domain magnetic nanoparticles through the principle of parametric amplification. It has previously been demonstrated that properly oriented anisotropic single domain magnetic nanoparticles have an appreciable peak in transverse susceptibility at the particle anisotropy field. Here we show theoretically and experimentally that an additional parametric AC magnetic field applied at a proper phase and at twice the frequency (2f) of the transverse field further enhances transverse susceptibility peaks through the process of parametric amplification. We model this effect numerically and describe it through the energy formalism of the single magnetic domain Stoner-Wohlfarth model. The proper phase relationships of the transverse and parametric fields to obtain either parametric amplification or attenuation of the transverse susceptibility signals are also described. We experimentally demonstrate such parametric tuning of transverse susceptibility in single domain magnetic nanoparticles of a commercial audio tape in a prototypical inductive transverse susceptibility set-up.
 

View Publication Page
03/18/96 | Parametric generation of second sound by first sound in superfluid helium.
Rinberg D, Cherepanov V, Steinberg V
Physical Review Letters. 1996 Mar 18;76(12):2105-8. doi: 10.1523/JNEUROSCI.3613-08.2008

We report the experimental studies of a parametric excitation of a second sound (SS) by a first sound (FS) in a superfluid helium in a resonance cavity. The results on several topics in this system are presented: (i) The linear properties of the instability, namely, the threshold, its temperature and geometrical dependencies, and the spectra of SS just above the onset were measured. They were found to be in a good quantitative agreement with the theory. (ii) It was shown that the mechanism of SS amplitude saturation is due to the nonlinear attenuation of SS via three wave interactions between the SS waves. Strong low frequency amplitude fluctuations of SS above the threshold were observed. The spectra of these fluctuations had a universal shape with exponentially decaying tails. Furthermore, the spectral width grew continuously with the FS amplitude. The role of three and four wave interactions are discussed with respect to the nonlinear SS behavior. The first evidence of Gaussian statistics of the wave amplitudes for the parametrically generated wave ensemble was obtained. (iii) The experiments on simultaneous pumping of the FS and independent SS waves revealed new effects. Below the instability threshold, the SS phase conjugation as a result of three-wave interactions between the FS and SS waves was observed. Above the threshold two new effects were found: a giant amplification of the SS wave intensity and strong resonance oscillations of the SS wave amplitude as a function of the FS amplitude. Qualitative explanations of these effects are suggested.

View Publication Page
06/12/14 | Parasympathetic ganglia derive from Schwann cell precursors
I. Espinosa-Medina , E. Outin , C. A. Picard , Z. Chettouh , S. Dymecki , G. G. Consalez , E. Coppola , J.-F. Brunet
Science. 06/2014;345:87-90. doi: 10.1126/science.1253286

The parasympathetic nervous system helps regulate the functions of many tissues and organs, including the salivary glands and the esophagus. To do so, it needs to reach throughout the body, connecting central systems to peripheral ones. Dyachuk et al. and Espinosa-Medina et al. explored how these connections are established in mice (see the Perspective by Kalcheim and Rohrer). Progenitor cells that travel along with the developing nerves can give rise to both myelinforming Schwann cells and to parasympathetic neurons. That means the interacting nerves do not have to find each other. Instead, the beginnings of the connections are laid down as the nervous system develops. Science, this issue p. 82, p. 87; see also p. 32 Parasympathetic neurons are born from Schwann cell precursors located in the nerves that carry preganglionic fibers. [Also see Perspective by Kalcheim and Rohrer] Neural crest cells migrate extensively and give rise to most of the peripheral nervous system, including sympathetic, parasympathetic, enteric, and dorsal root ganglia. We studied how parasympathetic ganglia form close to visceral organs and what their precursors are. We find that many cranial nerve-associated crest cells coexpress the pan-autonomic determinant Paired-like homeodomain 2b (Phox2b) together with markers of Schwann cell precursors. Some give rise to Schwann cells after down-regulation of PHOX2b. Others form parasympathetic ganglia after being guided to the site of ganglion formation by the nerves that carry preganglionic fibers, a parsimonious way of wiring the pathway. Thus, cranial Schwann cell precursors are the source of parasympathetic neurons during normal development.

View Publication Page
Svoboda Lab
11/23/18 | Paring down to the essentials.
Wang T
Science (New York, N.Y.). 2018 Nov 23;362(6417):904. doi: 10.1126/science.aav6872
07/01/22 | Partial resistance to citalopram in a Wistar-Kyoto rat model of depression: An evaluation using resting-state functional MRI and graph analysis.
Li Q, Zhao W, Liu S, Zhao Y, Pan W, Wang X, Liu Z, Xu Y
Journal of Psychiatric Research. 2022 Jul 01;151:242-251. doi: 10.1016/j.jpsychires.2022.04.010

Wistar-Kyoto (WKY) rats as an endogenous depression model partially lack a response to classic selective serotonin reuptake inhibitors (SSRIs). Thus, this strain has the potential to be established as a model of treatment-resistant depression (TRD). However, the SSRI resistance in WKY rats is still not fully understood. In this study, WKY and control rats were subjected to a series of tests, namely, a forced swim test (FST), a sucrose preference test (SPT), and an open field test (OFT), and were scanned in a 7.0-T MRI scanner before and after three-week citalopram or saline administration. Behavioral results demonstrated that WKY rats had increased immobility in the FST and decreased sucrose preference in the SPT and central time spent in the OFT. However, citalopram did not improve immobility in the FST. The amplitude of low-frequency fluctuation (ALFF) analysis showed regional changes in the striatum and hippocampus of WKY rats. However, citalopram partially reversed the ALFF value in the dorsal part of the two regions. Functional connectivity (FC) analysis showed that FC strengths were decreased in WKY rats compared with controls. Nevertheless, citalopram partially increased FC strengths in WKY rats. Based on FC, global graph analysis demonstrated decreased network efficiency in WKY + saline group compared with control + saline group, but citalopram showed weak network efficiency improvement. In conclusion, resting-state fMRI results implied widely affected brain function at both regional and global levels in WKY rats. Citalopram had only partial effects on these functional changes, indicating a potential treatment resistance mechanism.

View Publication Page
08/30/20 | Parvalbumin+ and Npas1+ Pallidal neurons have distinct circuit topology and function.
Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, Hantman AW, Lerner TN, Boca SM, Chan CS
Journal of Neuroscience. 2020 Aug 30:
04/01/24 | Patch-walking: Coordinated multi-pipette patch clamp for efficiently finding synaptic connections
Mighten C. Yip , Mercedes M. Gonzalez , Colby F. Lewallen , Corey R. Landry , Ilya Kolb , Bo Yang , William M. Stoy , Ming-fai Fong , Matthew JM Rowan , Edward S. Boyden , Craig R. Forest
bioRxiv. 2024 Apr 1:. doi: 10.1101/2024.03.30.587445

Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can “walk” across the tissue, termed “patch-walking.” We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e., 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding 3 connections. Patch-walking yields 80-92% more probed connections, for experiments with 10-100 cells than the traditional synaptic connection searching method.

View Publication Page
Magee Lab
04/16/09 | Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons.
Takahashi H, Magee JC
Neuron. 2009 Apr 16;62(1):102-11. doi: 10.1016/j.neuron.2009.03.007

Input comparison is thought to occur in many neuronal circuits, including the hippocampus, where functionally important interactions between the Schaffer collateral and perforant pathways have been hypothesized. We investigated this idea using multisite, whole-cell recordings and Ca2+ imaging and found that properly timed, repetitive stimulation of both pathways results in the generation of large plateau potentials in distal dendrites of CA1 pyramidal neurons. These dendritic plateau potentials produce widespread Ca2+ influx, large after-depolarizations, burst firing output, and long-term potentiation of perforant path synapses. Plateau duration is directly related to the strength and temporal overlap of pathway activation and involves back-propagating action potentials and both NMDA receptors and voltage-gated Ca2+ channels. Thus, the occurrence of highly correlated SC and PP input to CA1 is signaled by a dramatic change in output mode and an increase in input efficacy, all induced by a large plateau potential in the distal dendrites of CA1 pyramidal neurons.

View Publication Page
02/07/17 | Patterned cell and matrix dynamics in branching morphogenesis
Wang S, Sekiguchi R, Daley WP, Yamada KM
Journal of Cell Biology. 02/2017;216:559-570. doi: 10.1083/jcb.201610048

Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by “budding” or “clefting.” Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.

View Publication Page