Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 2841-2850 of 3920 results
04/01/14 | Rapid adaptive optical recovery of optimal resolution over large volumes.
Wang K, Milkie DE, Saxena A, Engerer P, Misgeld T, Bronner ME, Mumm J, Betzig E
Nature Methods. 2014 Apr;11:625-8. doi: 10.1038/nmeth.2925

Using a descanned, laser-induced guide star and direct wavefront sensing, we demonstrate adaptive correction of complex optical aberrations at high numerical aperture (NA) and a 14-ms update rate. This correction permits us to compensate for the rapid spatial variation in aberration often encountered in biological specimens and to recover diffraction-limited imaging over large volumes (>240 mm per side). We applied this to image fine neuronal processes and subcellular dynamics within the zebrafish brain.

View Publication Page
10/01/04 | Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila.
Berger KH, Heberlein U, Moore MS
Alcoholism, Clinical and Experimental Research. 2004 Oct;28(10):1469-80

BACKGROUND: Ethanol tolerance, defined as a reduction in the intensity of the effects of ethanol upon continuous or repeated exposure, is a hallmark of alcoholism. Tolerance may develop at the cellular or neural systems levels. The molecular changes underlying ethanol tolerance are not well understood. We therefore explored the utility of Drosophila, with its accessibility to genetic, molecular, and behavioral analyses, as a model organism to study tolerance development in response to different ethanol-exposure regimens.

METHODS: We describe a new assay that quantifies recovery from ethanol intoxication in Drosophila. Using this recovery assay, we define ethanol pre-exposure paradigms that lead to the development of tolerance. We also use the inebriometer, an assay that measures the onset of intoxication, to study the effects of pharmacological and genetic manipulations on tolerance development.

RESULTS: We show that flies develop different forms of ethanol tolerance: rapid tolerance, induced by a single short exposure to a high concentration of ethanol, and chronic tolerance, elicited by prolonged exposure to a low concentration of the drug. Neither rapid nor chronic tolerance involves changes in ethanol pharmacokinetics, implying that they represent functional rather than dispositional tolerance. Chronic and rapid tolerance can be distinguished mechanistically: chronic tolerance is disrupted by treatment with the protein synthesis inhibitor cycloheximide, whereas rapid tolerance is resistant to this treatment. Furthermore, rapid and chronic tolerance rely on distinct genetic pathways: a mutant defective for octopamine biosynthesis shows reduced rapid tolerance but normal chronic tolerance.

CONCLUSIONS: Flies, like mammals, develop tolerance in response to different ethanol-exposure regimens, and this tolerance affects both the onset of and the recovery from acute intoxication. Two forms of tolerance, rapid and chronic, are mechanistically distinct, because they can be dissociated genetically and pharmacologically.

View Publication Page
Karpova LabSvoboda Lab
12/08/05 | Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons.
Karpova AY, Tervo DG, Gray NW, Svoboda K
Neuron. 2005 Dec 8;48(5):727-35. doi: 10.1016/j.neuron.2005.11.015

Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.

View Publication Page
06/04/16 | Rapid and semi-automated extraction of neuronal cell bodies and nuclei from electron microscopy image stacks.
Holcomb PS, Morehead M, Doretto G, Chen P, Berg S, Plaza S, Spirou G
Methods in molecular biology (Clifton, N.J.). 2016;1427:277-90. doi: 10.1007/978-1-4939-3615-1_16

Connectomics-the study of how neurons wire together in the brain-is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes.

View Publication Page
06/01/01 | Rapid atomic density methods for molecular shape characterization.
Mitchell JC, Kerr R, Ten Eyck LF
Journal of Molecular Graphics & Modelling. 2001 Jun;19(3-4):325-30, 388-90

Two methods for rapid characterization of molecular shape are presented. Both techniques are based on the density of atoms near the molecular surface. The Fast Atomic Density Evaluation (FADE) algorithm uses fast Fourier transforms to quickly estimate densities. The Pairwise Atomic Density Reverse Engineering (PADRE) method derives modified density measures from the relationship between atomic density and total potentials. While many shape-characterization techniques define shape relative to a surface, the descriptors returned by FADE and PADRE can measure local geometry from points within the three-dimensional space surrounding a molecule. The methods can be used to find crevices and protrusions near the surface of a molecule and to test shape complementarity at the interface between docking molecules.

View Publication Page
09/15/16 | Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis.
Zhang Z, English BP, Grimm JB, Kazane SA, Hu W, Tsai A, Inouye C, You C, Piehler J, Schultz PG, Lavis LD, Revyakin A, Tjian R
Genes and Development. 2016 Sep 15;30:2106-18. doi: 10.1101/gad.285395.116

Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions.

View Publication Page
08/04/09 | Rapid evolution of sex pheromone-producing enzyme expression in Drosophila.
Shirangi TR, Dufour HD, Williams TM, Carroll SB
PLoS Biology. 2009 Aug 4;7(8):e1000168. doi: 10.1371/journal.pbio.1000168

A wide range of organisms use sex pheromones to communicate with each other and to identify appropriate mating partners. While the evolution of chemical communication has been suggested to cause sexual isolation and speciation, the mechanisms that govern evolutionary transitions in sex pheromone production are poorly understood. Here, we decipher the molecular mechanisms underlying the rapid evolution in the expression of a gene involved in sex pheromone production in Drosophilid flies. Long-chain cuticular hydrocarbons (e.g., dienes) are produced female-specifically, notably via the activity of the desaturase DESAT-F, and are potent pheromones for male courtship behavior in Drosophila melanogaster. We show that across the genus Drosophila, the expression of this enzyme is correlated with long-chain diene production and has undergone an extraordinary number of evolutionary transitions, including six independent gene inactivations, three losses of expression without gene loss, and two transitions in sex-specificity. Furthermore, we show that evolutionary transitions from monomorphism to dimorphism (and its reversion) in desatF expression involved the gain (and the inactivation) of a binding-site for the sex-determination transcription factor, DOUBLESEX. In addition, we documented a surprising example of the gain of particular cis-regulatory motifs of the desatF locus via a set of small deletions. Together, our results suggest that frequent changes in the expression of pheromone-producing enzymes underlie evolutionary transitions in chemical communication, and reflect changing regimes of sexual selection, which may have contributed to speciation among Drosophila.

View Publication Page
Svoboda Lab
01/29/09 | Rapid functional maturation of nascent dendritic spines.
Zito K, Scheuss V, Knott G, Hill T, Svoboda K
Neuron. 2009 Jan 29;61(2):247-58. doi: 10.1016/j.neuron.2008.10.054

Spine growth and retraction with synapse formation and elimination plays an important role in shaping brain circuits during development and in the adult brain, yet the temporal relationship between spine morphogenesis and the formation of functional synapses remains poorly defined. We imaged hippocampal pyramidal neurons to identify spines of different ages. We then used two-photon glutamate uncaging, whole-cell recording, and Ca(2+) imaging to analyze the properties of nascent spines and their older neighbors. New spines expressed glutamate-sensitive currents that were indistinguishable from mature spines of comparable volumes. Some spines exhibited negligible AMPA receptor-mediated responses, but the occurrence of these "silent" spines was uncorrelated with spine age. In contrast, NMDA receptor-mediated Ca(2+) accumulations were significantly lower in new spines. New spines reconstructed using electron microscopy made synapses. Our data support a model in which outgrowth and enlargement of nascent spines is tightly coupled to formation and maturation of glutamatergic synapses.

View Publication Page
03/02/20 | Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
Lu R, Liang Y, Meng G, Zhou P, Svoboda K, Paninski L, Ji N
Nature Methods. 2020 Mar 02;17(3):291-4. doi: 10.1038/s41592-020-0760-9

Imaging neurons and neural circuits over large volumes at high speed and subcellular resolution is a difficult task. Incorporating a Bessel focus module into a two-photon fluorescence mesoscope, we achieved rapid volumetric imaging of neural activity over the mesoscale with synaptic resolution. We applied the technology to calcium imaging of entire dendritic spans of neurons as well as neural ensembles within multiple cortical regions over two hemispheres of the awake mouse brain.

View Publication Page
01/01/12 | Rapid mounting of adult Drosophila structures in Hoyer's medium.
Stern DL, Sucena E
Cold Spring Harb Protoc. 2012 Jan;2012(1):107-9. doi: 10.1101/pdb.prot067371

The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

View Publication Page