Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4164 Publications

Showing 3131-3140 of 4164 results
Freeman Lab
01/27/15 | Representing "stuff" in visual cortex.
Ziemba CM, Freeman J
Proceedings of the National Academy of Sciences of the United States of America. 2015 Jan 27;112(4):942-3. doi: 10.1073/pnas.1423496112
01/01/05 | Representing part-whole relationships in recurrent neural networks.
Jain V, Zhigulin V, Seung HS
Neural Information Processing Systems. 2005;18:563-70

There is little consensus about the computational function of top-down synaptic connections in the visual system. Here we explore the hypothesis that top-down connections, like bottom-up connections, reflect partwhole relationships. We analyze a recurrent network with bidirectional synaptic interactions between a layer of neurons representing parts and a layer of neurons representing wholes. Within each layer, there is lateral inhibition. When the network detects a whole, it can rigorously enforce part-whole relationships by ignoring parts that do not belong. The network can complete the whole by filling in missing parts. The network can refuse to recognize a whole, if the activated parts do not conform to a stored part-whole relationship. Parameter regimes in which these behaviors happen are identified using the theory of permitted and forbidden sets [3, 4]. The network behaviors are illustrated by recreating Rumelhart and McClelland’s “interactive activation” model [7].

View Publication Page
06/07/10 | Reproductive constraints, direct fitness and indirect fitness benefits explain helping behaviour in the primitively eusocial wasp, Polistes canadensis.
Sumner S, Kelstrup H, Fanelli D
Proceedings. Biological Sciences / The Royal Society. 2010 Jun 7;277:1721-8. doi: 10.1098/rspb.2009.2289

A key step in the evolution of sociality is the abandonment of independent breeding in favour of helping. In cooperatively breeding vertebrates and primitively eusocial insects, helpers are capable of leaving the group and reproducing independently, and yet many do not. A fundamental question therefore is why do helpers help? Helping behaviour may be explained by constraints on independent reproduction and/or benefits to individuals from helping. Here, we examine simultaneously the reproductive constraints and fitness benefits underlying helping behaviour in a primitively eusocial paper wasp. We gave 31 helpers the opportunity to become egg-layers on their natal nests by removing nestmates. This allowed us to determine whether helpers are reproductively constrained in any way. We found that age strongly influenced whether an ex-helper could become an egg-layer, such that young ex-helpers could become egg-layers while old ex-helpers were less able. These differential reproductive constraints enabled us to make predictions about the behaviours of ex-helpers, depending on the relative importance of direct and indirect fitness benefits. We found little evidence that indirect fitness benefits explain helping behaviour, as 71 per cent of ex-helpers left their nests before the end of the experiment. In the absence of reproductive constraints, however, young helpers value direct fitness opportunities over indirect fitness. We conclude that a combination of reproductive constraints and potential for future direct reproduction explain helping behaviour in this species. Testing several competing explanations for helping behaviour simultaneously promises to advance our understanding of social behaviour in animal groups.

View Publication Page
Riddiford Lab
04/17/14 | Reproductive status, endocrine physiology and chemical signaling in the Neotropical, swarm-founding eusocial wasp, Polybia micans Ducke (Vespidae: Epiponini).
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM
The Journal of Experimental Biology. 2014 Apr 17;217(Pt 13):2399-410. doi: 10.1242/jeb.096750

In the evolution of caste-based societies in Hymenoptera, the classical insect hormones, juvenile hormone (JH) and ecdysteroids, were co-opted into new functions. Social wasps, which show all levels of sociality and lifestyles, are an ideal group to study such functional changes. Virtually all studies on the physiological mechanisms underlying reproductive division of labor and caste functions in wasps have been done on independent-founding paper wasps, and the majority of these studies have focused on species specially adapted for overwintering. The relatively little studied tropical swarming-founding wasps of the Epiponini (Vespidae) are a diverse group of permanently social wasps, with some species maintaining caste flexibility well into the adult phase. We investigated the behavior, reproductive status, JH and ecdysteroid titers in hemolymph, ecdysteroid content of the ovary and cuticular hydrocarbon (CHC) profiles in the caste-monomorphic, epiponine wasp Polybia micans Ducke. We found that the JH titer was not elevated in competing queens from established multiple-queen nests, but increased in lone queens that lack direct competition. In queenless colonies, JH titers rose transiently in young potential reproductives upon challenge by nestmates, suggesting that JH may prime the ovaries for further development. Ovarian ecdysteroids were very low in workers but higher and correlated with the number of vitellogenic oocytes in the queens. Hemolymph ecdysteroid levels were low and variable in both. Profiles of P. micans CHCs reflected caste, age and reproductive status, but were not tightly linked to either hormone. These findings show a significant divergence in hormone function in swarm-founding wasps compared to independent-founding ones.

View Publication Page
04/18/16 | Repulsive cues combined with physical barriers and cell–cell adhesion determine progenitor cell positioning during organogenesis
Paksa A, Bandemer J, Höckendorf B, Razin N, Tarbashevich K, Minina S, Meyen D, Gov NS, Keller PJ, Raz E
Nature Communications. 2016 Apr 18;7:11288. doi: 10.1038/ncomms11288

The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function.

View Publication Page
05/10/22 | Rescue of behavioral and electrophysiological phenotypes in a Pitt-Hopkins syndrome mouse model by genetic restoration of expression.
Kim H, Gao EB, Draper A, Berens NC, Vihma H, Zhang X, Higashi-Howard A, Ritola KD, Simon JM, Kennedy AJ, Philpot BD
eLife. 2022 May 10;11:. doi: 10.7554/eLife.72290

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by monoallelic mutation or deletion in the () gene. Individuals with PTHS typically present in the first year of life with developmental delay and exhibit intellectual disability, lack of speech, and motor incoordination. There are no effective treatments available for PTHS, but the root cause of the disorder, haploinsufficiency, suggests that it could be treated by normalizing gene expression. Here, we performed proof-of-concept viral gene therapy experiments using a conditional mouse model of PTHS and found that postnatally reinstating expression in neurons improved anxiety-like behavior, activity levels, innate behaviors, and memory. Postnatal reinstatement also partially corrected EEG abnormalities, which we characterized here for the first time, and the expression of key TCF4-regulated genes. Our results support a genetic normalization approach as a treatment strategy for PTHS, and possibly other TCF4-linked disorders.

View Publication Page
06/01/24 | Resolution in super-resolution microscopy - definition, trade-offs and perspectives.
Prakash K, Baddeley D, Eggeling C, Fiolka R, Heintzmann R, Manley S, Radenovic A, Smith C, Shroff H, Schermelleh L
Nat Rev Mol Cell Biol. 2024 Jul 01:. doi: 10.1038/s41580-024-00755-7

Super-resolution microscopy (SRM) is gaining popularity in biosciences; however, claims about optical resolution are contested and often misleading. In this Viewpoint, experts share their views on resolution and common trade-offs, such as labelling and post-processing, aiming to clarify them for biologists and facilitate deeper understanding and best use of SRM.

View Publication Page
05/27/25 | Resolution in super-resolution microscopy - facts, artifacts, technological advancements and biological applications
Prakash K, Baddeley D, Eggeling C, Fiolka R, Heintzmann R, Manley S, Radenovic A, Shroff H, Smith C, Schermelleh L
J Cell Sci. 2025 May 27;138(10):. doi: 10.1242/jcs.263567

Super-resolution microscopy (SRM) has undeniable potential for scientific discovery, yet still presents many challenges that hinder its widespread adoption, including technical trade-offs between resolution, speed and photodamage, as well as limitations in imaging live samples and larger, more complex biological structures. Furthermore, SRM often requires specialized expertise and complex instrumentation, which can deter biologists from fully embracing the technology. In this Perspective, a follow-up to our recent Q&A article, we aim to demystify these challenges by addressing common questions and misconceptions surrounding SRM. Experts offer practical insights into how biologists can maximize the benefits of SRM while navigating issues such as photobleaching, image artifacts and the limitations of existing techniques. We also highlight recent developments in SRM that continue to push the boundaries of resolution. Our goal is to equip researchers with the crucial knowledge they need to harness the full potential of SRM.

View Publication Page
06/01/07 | Response profiles to amino acid odorants of olfactory glomeruli in larval Xenopus laevis.
Manzini I, Brase C, Chen T, Schild D
The Journal of Physiology. 2007 Jun 1;581(Pt 2):567-79. doi: 10.1113/jphysiol.2007.130518

Glomeruli in the vertebrate olfactory bulb (OB) appear as anatomically discrete modules receiving direct input from the olfactory epithelium (OE) via axons of olfactory receptor neurons (ORNs). The response profiles with respect to amino acids (AAs) of a large number of ORNs in larval Xenopus laevis have been recently determined and analysed. Here we report on Ca(2+) imaging experiments in a nose-brain preparation of the same species at the same developmental stages. We recorded responses to AAs of glomeruli in the OB and determined the response profiles to AAs of individual glomeruli. We describe the general features of AA-responsive glomeruli and compare their response profiles to AAs with those of ORNs obtained in our previous study. A large number of past studies have focused either on odorant responses in the OE or on odorant-induced responses in the OB. However, a thorough comparison of odorant-induced responses of both stages, ORNs and glomeruli of the same species is as yet lacking. The glomerular response profiles reported herein markedly differ from the previously obtained response profiles of ORNs in that glomeruli clearly have narrower selectivity profiles than ORNs. We discuss possible explanations for the different selectivity profiles of glomeruli and ORNs in the context of the development of the olfactory map.

View Publication Page
Svoboda Lab
08/03/19 | Response to "Fallacies of mice experiments".
Gao Z, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N
Neuroinformatics. 2019 Aug 03:. doi: 10.1007/s12021-019-09433-y

In a recent Editorial, De Schutter commented on our recent study on the roles of a cortico-cerebellar loop in motor planning in mice (De Schutter 2019, Neuroinformatics, 17, 181-183, Gao et al. 2018, Nature, 563, 113-116). Two issues were raised. First, De Schutter questions the involvement of the fastigial nucleus in motor planning, rather than the dentate nucleus, given previous anatomical studies in non-human primates. Second, De Schutter suggests that our study design did not delineate different components of the behavior and the fastigial nucleus might play roles in sensory discrimination rather than motor planning. These comments are based on anatomical studies in other species and homology-based arguments and ignore key anatomical data and neurophysiological experiments from our study. Here we outline our interpretation of existing data and point out gaps in knowledge where future studies are needed.

View Publication Page