Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3181-3190 of 3920 results
04/19/19 | Spontaneous behaviors drive multidimensional, brain-wide population activity.
Stringer C, Pachitariu M, Steinmetz NA, Reddy CB, Carandini M, Harris KD
Science. 2019 Apr 18;364(6437):255. doi: 10.1101/306019

Sensory cortices are active in the absence of external sensory stimuli. To understand the nature of this ongoing activity, we used two-photon calcium imaging to record from over 10,000 neurons in the visual cortex of mice awake in darkness while monitoring their behavior videographically. Ongoing population activity was multidimensional, exhibiting at least 100 significant dimensions, some of which were related to the spontaneous behaviors of the mice. The largest single dimension was correlated with the running speed and pupil area, while a 16-dimensional summary of orofacial behaviors could predict ~45% of the explainable neural variance. Electrophysiological recordings with 8 simultaneous Neuropixels probes revealed a similar encoding of high-dimensional orofacial behaviors across multiple forebrain regions. Representation of motor variables continued uninterrupted during visual stimulus presentation, occupying dimensions nearly orthogonal to the stimulus responses. Our results show that a multidimensional representation of motor state is encoded across the forebrain, and is integrated with visual input by neuronal populations in primary visual cortex.

View Publication Page
11/21/05 | Spore number control and breeding in Saccharomyces cerevisiae: a key role for a self-organizing system.
Taxis C, Keller P, Kavagiou Z, Jensen LJ, Colombelli J, Bork P, Stelzer EH, Knop M
The Journal of Cell Biology. 2005 Nov 21;171(4):627-40. doi: 10.1083/jcb.200507168

Spindle pole bodies (SPBs) provide a structural basis for genome inheritance and spore formation during meiosis in yeast. Upon carbon source limitation during sporulation, the number of haploid spores formed per cell is reduced. We show that precise spore number control (SNC) fulfills two functions. SNC maximizes the production of spores (1-4) that are formed by a single cell. This is regulated by the concentration of three structural meiotic SPB components, which is dependent on available amounts of carbon source. Using experiments and computer simulation, we show that the molecular mechanism relies on a self-organizing system, which is able to generate particular patterns (different numbers of spores) in dependency on one single stimulus (gradually increasing amounts of SPB constituents). We also show that SNC enhances intratetrad mating, whereby maximal amounts of germinated spores are able to return to a diploid lifestyle without intermediary mitotic division. This is beneficial for the immediate fitness of the population of postmeiotic cells.

View Publication Page
03/11/24 | Spot Spine, a freely available ImageJ plugin for 3D detection and morphological analysis of dendritic spines
Gilles J, Mailly P, Ferreira T, Boudier T, Heck N
F1000Research. 2024 Mar 11;13:. doi: 10.12688/f1000research.146327.1

Background

Dendritic spines are tiny protrusions found along the dendrites of neurons, and their number is a measure of the density of synaptic connections. Altered density and morphology is observed in several pathologies, and spine formation as well as morphological changes correlate with learning and memory. The detection of spines in microscopy images and the analysis of their morphology is therefore a prerequisite for many studies. We have developed a new open-source, freely available, plugin for ImageJ/FIJI, called Spot Spine, that allows detection and morphological measurements of spines in three dimensional images.

Method

Local maxima are detected in spine heads, and the intensity distribution around the local maximum is computed to perform the segmentation of each spine head. Spine necks are then traced from the spine head to the dendrite. Several parameters can be set to optimize detection and segmentation, and manual correction gives further control over the result of the process.

Results

The plugin allows the analysis of images of dendrites obtained with various labeling and imaging methods. Quantitative measurements are retrieved including spine head volume and surface, and neck length.

Conclusion

The plugin and instructions for use are available at https://imagej.net/plugins/spot-spine.

View Publication Page
06/02/04 | Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae.
Zhang Z, Reese JC
The EMBO Journal. 2004 Jun 2;23(11):2246-57. doi: 10.1038/sj.emboj.7600227

The Imitation SWItch (ISWI) chromatin remodeling factors have been implicated in nucleosome positioning. In vitro, they can mobilize nucleosomes bi-directionally, making it difficult to envision how they can establish precise translational positioning of nucleosomes in vivo. It has been proposed that they require other cellular factors to do so, but none has been identified thus far. Here, we demonstrate that both ISW2 and TUP1 are required to position nucleosomes across the entire coding sequence of the DNA damage-inducible gene RNR3. The chromatin structure downstream of the URS is indistinguishable in Deltaisw2 and Deltatup1 mutants, and the crosslinking of Tup1 and Isw2 to RNR3 is independent of each other, indicating that both complexes are required to maintain repressive chromatin structure. Furthermore, Tup1 repressed RNR3 and blocked preinitiation complex formation in the Deltaisw2 mutant, even though nucleosome positioning was completely disrupted over the promoter and ORF. Our study has revealed a novel collaboration between two nucleosome-positioning activities in vivo, and suggests that disruption of nucleosome positioning is insufficient to cause a high level of transcription.

View Publication Page
02/01/07 | Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions.
Kaczorowski CC, Disterhoft J, Spruston N
The Journal of Physiology. 2007 Feb 1;578(Pt 3):799-818. doi: 10.1113/jphysiol.2006.124586

CA1 pyramidal neurons from animals that have acquired hippocampal tasks show increased neuronal excitability, as evidenced by a reduction in the postburst afterhyperpolarization (AHP). Studies of AHP plasticity require stable long-term recordings, which are affected by the intracellular solutions potassium methylsulphate (KMeth) or potassium gluconate (KGluc). Here we show immediate and gradual effects of these intracellular solutions on measurement of the AHP and basic membrane properties, and on the induction of AHP plasticity in CA1 pyramidal neurons from rat hippocampal slices. The AHP measured immediately after establishing whole-cell recordings was larger with KMeth than with KGluc. In general, the AHP in KMeth was comparable to the AHP measured in the perforated-patch configuration. However, KMeth induced time-dependent changes in the intrinsic membrane properties of CA1 pyramidal neurons. Specifically, input resistance progressively increased by 70% after 50 min; correspondingly, the current required to trigger an action potential and the fast afterdepolarization following action potentials gradually decreased by about 50%. Conversely, these measures were stable in KGluc. We also demonstrate that activity-dependent plasticity of the AHP occurs with physiologically relevant stimuli in KGluc. AHPs triggered with theta-burst firing every 30 s were progressively reduced, whereas AHPs elicited every 150 s were stable. Blockade of the apamin-sensitive AHP current (I(AHP)) was insufficient to block AHP plasticity, suggesting that plasticity is manifested through changes in the apamin-insensitive slow AHP current (sI(AHP)). These changes were observed in the presence of synaptic blockers, and therefore reflect changes in the intrinsic properties of the neurons. However, no AHP plasticity was observed using KMeth. In summary, these data show that KMeth produces time-dependent changes in basic membrane properties and prevents or obscures activity-dependent reduction of the AHP. In whole-cell recordings using KGluc, repetitive theta-burst firing induced AHP plasticity that mimics learning-related reduction in the AHP.

View Publication Page
11/01/18 | Stability, affinity and chromatic variants of the glutamate sensor iGluSnFR.
Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, Mueller JA, Schoch-McGovern S, Wang SS, Quiroz FJ, Rebola N, Bao H, Little JP, Tkachuk AN, Hantman AW, Chapman ER, Dietrich D, DiGregorio DA, Fitzpatrick D, Looger LL
Nature Methods. 2018 Nov;15(11):9386-9. doi: 10.1038/s41592-018-0171-3

Single-wavelength fluorescent reporters allow visualization of specific neurotransmitters with high spatial and temporal resolution. We report variants of intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) that are functionally brighter; detect submicromolar to millimolar amounts of glutamate; and have blue, cyan, green, or yellow emission profiles. These variants could be imaged in vivo in cases where original iGluSnFR was too dim, resolved glutamate transients in dendritic spines and axonal boutons, and allowed imaging at kilohertz rates.

View Publication Page
07/27/08 | Standardized atlas of the brain of the desert locust, Schistocerca gregaria.
Kurylas AE, Rohlfing T, Krofczik S, Jenett A, Homberg U
Cell and Tissue Research. 2008 Jul 27;333(1):125-45. doi: 10.1007/s00441-008-0620-x

In order to understand the connectivity of neuronal networks, their constituent neurons should ideally be studied in a common framework. Since morphological data from physiologically characterized and stained neurons usually arise from different individual brains, this can only be performed in a virtual standardized brain that compensates for interindividual variability. The desert locust, Schistocerca gregaria, is an insect species used widely for the analysis of olfactory and visual signal processing, endocrine functions, and neural networks controlling motor output. To provide a common multi-user platform for neural circuit analysis in the brain of this species, we have generated a standardized three-dimensional brain of this locust. Serial confocal images from whole-mount locust brains were used to reconstruct 34 neuropil areas in ten brains. For standardization, we compared two different methods: an iterative shape-averaging (ISA) procedure by using affine transformations followed by iterative nonrigid registrations, and the Virtual Insect Brain (VIB) protocol by using global and local rigid transformations followed by local nonrigid transformations. Both methods generated a standard brain, but for different applications. Whereas the VIB technique was designed to visualize anatomical variability between the input brains, the purpose of the ISA method was the opposite, i.e., to remove this variability. A novel individually labeled neuron, connecting the lobula to the midbrain and deutocerebrum, has been registered into the ISA atlas and demonstrates its usefulness and accuracy for future analysis of neural networks. The locust standard brain is accessible at http://www.3d-insectbrain.com .

View Publication Page
09/27/10 | Starved cells use mitochondria for autophagosome biogenesis.
Rambold AS, Lippincott-Schwartz J
Cell cycle (Georgetown, Tex.). 2010 Sep 15;9(18):3633-4. doi: 10.4161/cc.9.18.13170
Branson LabCard Lab
07/01/19 | State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila.
Ache JM, Namiki S, Lee A, Branson K, Card GM
Nature Neuroscience. 2019 Jul 01;22(7):1132-1139. doi: 10.1038/s41593-019-0413-4

An approaching predator and self-motion toward an object can generate similar looming patterns on the retina, but these situations demand different rapid responses. How central circuits flexibly process visual cues to activate appropriate, fast motor pathways remains unclear. Here we identify two descending neuron (DN) types that control landing and contribute to visuomotor flexibility in Drosophila. For each, silencing impairs visually evoked landing, activation drives landing, and spike rate determines leg extension amplitude. Critically, visual responses of both DNs are severely attenuated during non-flight periods, effectively decoupling visual stimuli from the landing motor pathway when landing is inappropriate. The flight-dependence mechanism differs between DN types. Octopamine exposure mimics flight effects in one, whereas the other probably receives neuronal feedback from flight motor circuits. Thus, this sensorimotor flexibility arises from distinct mechanisms for gating action-specific descending pathways, such that sensory and motor networks are coupled or decoupled according to the behavioral state.

View Publication Page
Magee Lab
02/15/06 | State-dependent dendritic computation in hippocampal CA1 pyramidal neurons.
Gasparini S, Magee JC
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2006 Feb 15;26(7):2088-100. doi: 10.1002/cbic.201000254

Depending on the behavioral state, hippocampal CA1 pyramidal neurons receive very distinct patterns of synaptic input and likewise produce very different output patterns. We have used simultaneous dendritic and somatic recordings and multisite glutamate uncaging to investigate the relationship between synaptic input pattern, the form of dendritic integration, and action potential output in CA1 neurons. We found that when synaptic input arrives asynchronously or highly distributed in space, the dendritic arbor performs a linear integration that allows the action potential rate and timing to vary as a function of the quantity of the input. In contrast, when synaptic input arrives synchronously and spatially clustered, the dendritic compartment receiving the clustered input produces a highly nonlinear integration that leads to an action potential output that is extraordinarily precise and invariant. We also present evidence that both of these forms of information processing may be independently engaged during the two distinct behavioral states of the hippocampus such that individual CA1 pyramidal neurons could perform two different state-dependent computations: input strength encoding during theta states and feature detection during sharp waves.

View Publication Page