Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3371-3380 of 3920 results
Svoboda Lab
01/25/21 | Targeted photostimulation uncovers circuit motifs supporting short-term memory.
Daie K, Svoboda K, Druckmann S
Nature Neuroscience. 2021 Jan 25;24(2):259-265. doi: 10.1038/s41593-020-00776-3

Short-term memory is associated with persistent neural activity that is maintained by positive feedback between neurons. To explore the neural circuit motifs that produce memory-related persistent activity, we measured coupling between functionally characterized motor cortex neurons in mice performing a memory-guided response task. Targeted two-photon photostimulation of small (<10) groups of neurons produced sparse calcium responses in coupled neurons over approximately 100 μm. Neurons with similar task-related selectivity were preferentially coupled. Photostimulation of different groups of neurons modulated activity in different subpopulations of coupled neurons. Responses of stimulated and coupled neurons persisted for seconds, far outlasting the duration of the photostimuli. Photostimuli produced behavioral biases that were predictable based on the selectivity of the perturbed neuronal population, even though photostimulation preceded the behavioral response by seconds. Our results suggest that memory-related neural circuits contain intercalated, recurrently connected modules, which can independently maintain selective persistent activity.

View Publication Page
Tjian Lab
06/01/03 | Targeting genes and transcription factors to segregated nuclear compartments.
Isogai Y, Tjian R
Current Opinion in Cell Biology. 2003 Jun;15(3):296-303. doi: 10.1073/pnas.1100640108

With increasingly detailed images of nuclear structures revealed by advanced microscopy, a remarkably compartmentalized cell nucleus has come into focus. Although this complex nuclear organization remains largely unexplored, some progress has been made in deciphering the functional aspects of various subnuclear structures, revealing how this elaborate framework can influence gene activation. Several recent studies have helped illustrate how cells might utilize the nuclear architecture as an additional level of transcriptional control, perhaps by targeting genes and regulatory factors to specific sites within the nucleus that are designated for active RNA synthesis.

View Publication Page
06/02/22 | Targeting LIPA independent of its lipase activity is a therapeutic strategy in solid tumors via induction of endoplasmic reticulum stress.
Liu X, Viswanadhapalli S, Kumar S, Lee T, Moore A, Ma S, Chen L, Hsieh M, Li M, Sareddy GR, Parra K, Blatt EB, Reese TC, Zhao Y, Chang A, Yan H, Xu Z, Pratap UP, Liu Z, Roggero CM, Tan Z, Weintraub ST, Peng Y, Tekmal RR, Arteaga CL, Lippincott-Schwartz J, Vadlamudi RK, Ahn J, Raj GV
Nature Cancer. 2022 Jun 02;3(7):866-884. doi: 10.1038/s43018-022-00389-8

Triple-negative breast cancer (TNBC) has a poor clinical outcome, due to a lack of actionable therapeutic targets. Herein we define lysosomal acid lipase A (LIPA) as a viable molecular target in TNBC and identify a stereospecific small molecule (ERX-41) that binds LIPA. ERX-41 induces endoplasmic reticulum (ER) stress resulting in cell death, and this effect is on target as evidenced by specific LIPA mutations providing resistance. Importantly, we demonstrate that ERX-41 activity is independent of LIPA lipase function but dependent on its ER localization. Mechanistically, ERX-41 binding of LIPA decreases expression of multiple ER-resident proteins involved in protein folding. This targeted vulnerability has a large therapeutic window, with no adverse effects either on normal mammary epithelial cells or in mice. Our study implicates a targeted strategy for solid tumors, including breast, brain, pancreatic and ovarian, whereby small, orally bioavailable molecules targeting LIPA block protein folding, induce ER stress and result in tumor cell death.

View Publication Page
07/06/22 | Taste quality interactions and transformations in a sensorimotor circuit
Philip K. Shiu , Gabriella R. Sterne , Stefanie Engert , Barry J. Dickson , Kristin Scott
eLife. 2022 Jul 06:. doi: 10.1101/2022.03.06.483180

Taste detection and hunger state dynamically regulate the decision to initiate feeding. To study how context-appropriate feeding decisions are generated, we combined synaptic resolution circuit reconstruction with targeted genetic access to specific neurons to elucidate a gustatory sensorimotor circuit for feeding initiation in Drosophila melanogaster. This circuit connects gustatory sensory neurons to proboscis motor neurons through three intermediate layers. Most of the neurons in this pathway are necessary and sufficient for proboscis extension, a feeding initiation behavior, and respond selectively to sugar taste detection. Hunger signals act at select second-order neurons to increase feeding initiation in food-deprived animals. In contrast, a bitter taste pathway inhibits premotor neurons, illuminating a central mechanism that weighs sugar and bitter tastes to promote or inhibit feeding. Together, these studies reveal the neural circuit basis for the integration of external taste detection and internal nutritive state to flexibly execute a critical feeding decision.

View Publication Page
Grigorieff Lab
06/24/14 | Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center.
Koh CS, Brilot AF, Grigorieff N, Korostelev AA
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9139-44. doi: 10.1073/pnas.1406335111

In cap-dependent translation initiation, the open reading frame (ORF) of mRNA is established by the placement of the AUG start codon and initiator tRNA in the ribosomal peptidyl (P) site. Internal ribosome entry sites (IRESs) promote translation of mRNAs in a cap-independent manner. We report two structures of the ribosome-bound Taura syndrome virus (TSV) IRES belonging to the family of Dicistroviridae intergenic IRESs. Intersubunit rotational states differ in these structures, suggesting that ribosome dynamics play a role in IRES translocation. Pseudoknot I of the IRES occupies the ribosomal decoding center at the aminoacyl (A) site in a manner resembling that of the tRNA anticodon-mRNA codon. The structures reveal that the TSV IRES initiates translation by a previously unseen mechanism, which is conceptually distinct from initiator tRNA-dependent mechanisms. Specifically, the ORF of the IRES-driven mRNA is established by the placement of the preceding tRNA-mRNA-like structure in the A site, whereas the 40S P site remains unoccupied during this initial step.

View Publication Page
Tjian Lab
09/01/08 | TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription.
Hsu J, Juven-Gershon T, Marr MT, Wright KJ, Tjian R, Kadonaga JT
Genes & Development. 2008 Sep 1;22(17):2353-8. doi: 10.1073/pnas.1100640108

The RNA polymerase II core promoter is a structurally and functionally diverse transcriptional module. RNAi depletion and overexpression experiments revealed a genetic circuit that controls the balance of transcription from two core promoter motifs, the TATA box and the downstream core promoter element (DPE). In this circuit, TBP activates TATA-dependent transcription and represses DPE-dependent transcription, whereas Mot1 and NC2 block TBP function and thus repress TATA-dependent transcription and activate DPE-dependent transcription. This regulatory circuit is likely to be one means by which biological networks can transmit transcriptional signals, such as those from DPE-specific and TATA-specific enhancers, via distinct pathways.

View Publication Page
06/27/19 | Teaching deep neural networks to localize single molecules for super-resolution microscopy
Speiser A, Müller L, Matti U, Obara CJ, Legant WR, Ries J, Macke JH, Turaga SC
arXiv e-prints. 06/2019:arXiv:1907.00770

Single-molecule localization fluorescence microscopy constructs super-resolution images by sequential imaging and computational localization of sparsely activated fluorophores. Accurate and efficient fluorophore localization algorithms are key to the success of this computational microscopy method. We present a novel localization algorithm based on deep learning which significantly improves upon the state of the art. Our contributions are a novel network architecture for simultaneous detection and localization, and new loss function which phrases detection and localization as a Bayesian inference problem, and thus allows the network to provide uncertainty-estimates. In contrast to standard methods which independently process imaging frames, our network architecture uses temporal context from multiple sequentially imaged frames to detect and localize molecules. We demonstrate the power of our method across a variety of datasets, imaging modalities, signal to noise ratios, and fluorophore densities. While existing localization algorithms can achieve optimal localization accuracy at low fluorophore densities, they are confounded by high densities. Our method is the first deep-learning based approach which achieves state-of-the-art on the SMLM2016 challenge. It achieves the best scores on 12 out of 12 data-sets when comparing both detection accuracy and precision, and excels at high densities. Finally, we investigate how unsupervised learning can be used to make the network robust against mismatch between simulated and real data. The lessons learned here are more generally relevant for the training of deep networks to solve challenging Bayesian inverse problems on spatially extended domains in biology and physics.

View Publication Page
06/27/19 | Teaching deep neural networks to localize single molecules for super-resolution microscopy
Artur Speiser , Lucas-Raphael Müller , Ulf Matti , Christopher J. Obara , Wesley R. Legant , Jonas Ries , Jakob H. Macke , Srinivas C. Turaga

Single-molecule localization fluorescence microscopy constructs super-resolution images by sequential imaging and computational localization of sparsely activated fluorophores. Accurate and efficient fluorophore localization algorithms are key to the success of this computational microscopy method. We present a novel localization algorithm based on deep learning which significantly improves upon the state of the art. Our contributions are a novel network architecture for simultaneous detection and localization, and new loss function which phrases detection and localization as a Bayesian inference problem, and thus allows the network to provide uncertainty-estimates. In contrast to standard methods which independently process imaging frames, our network architecture uses temporal context from multiple sequentially imaged frames to detect and localize molecules. We demonstrate the power of our method across a variety of datasets, imaging modalities, signal to noise ratios, and fluorophore densities. While existing localization algorithms can achieve optimal localization accuracy at low fluorophore densities, they are confounded by high densities. Our method is the first deep-learning based approach which achieves state-of-the-art on the SMLM2016 challenge. It achieves the best scores on 12 out of 12 data-sets when comparing both detection accuracy and precision, and excels at high densities. Finally, we investigate how unsupervised learning can be used to make the network robust against mismatch between simulated and real data. The lessons learned here are more generally relevant for the training of deep networks to solve challenging Bayesian inverse problems on spatially extended domains in biology and physics.

View Publication Page
04/07/17 | Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines.
Lavis LD
Annual Review of Biochemistry. 2017 Apr 07;86:825-43. doi: 10.1146/annurev-biochem-061516-044839

Small-molecule fluorophores, such as fluorescein and rhodamine derivatives, are critical tools in modern biochemical and biological research. The field of chemical dyes is old; colored molecules were first discovered in the 1800s, and the fluorescein and rhodamine scaffolds have been known for over a century. Nevertheless, there has been a renaissance in using these dyes to create tools for biochemistry and biology. The application of modern chemistry, biochemistry, molecular genetics, and optical physics to these old structures enables and drives the development of novel, sophisticated fluorescent dyes. This critical review focuses on an important example of chemical biology-the melding of old and new chemical knowledge-leading to useful molecules for advanced biochemical and biological experiments. Expected final online publication date for the Annual Review of Biochemistry Volume 86 is June 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
Ji LabFreeman Lab
08/26/16 | Technologies for imaging neural activity in large volumes.
Ji N, Freeman J, Smith SL
Nature Neuroscience. 2016 Aug 26;19(9):1154-64. doi: 10.1038/nn.4358

Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Conventional microscopy collects data from individual planes and cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point-spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for processing and analyzing volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics and helping elucidate how brain regions work in concert to support behavior.

View Publication Page