Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3381-3390 of 3920 results
Cardona LabFunke Lab
01/17/17 | TED: A Tolerant Edit Distance for segmentation evaluation.
Funke J, Klein J, Moreno-Noguer F, Cardona A, Cook M
Methods. 2017 Jan 17;115:119-27. doi: 10.1016/j.ymeth.2016.12.013

In this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods.

View Publication Page
Looger Lab
04/17/20 | Temperature-dependent sex determination is mediated by pSTAT3 repression of Kdm6b..
Weber C, Zhou Y, Lee JG, Looger LL, Qian G, Ge C, Capel B
Science. 2020 Apr 17;368(6488):303-306. doi: 10.1126/science.aaz4165

In many reptiles, including the red-eared slider turtle (), sex is determined by ambient temperature during embryogenesis. We previously showed that the epigenetic regulator is elevated at the male-producing temperature and essential to activate the male pathway. In this work, we established a causal link between temperature and transcriptional regulation of We show that signal transducer and activator of transcription 3 (STAT3) is phosphorylated at the warmer, female-producing temperature, binds the locus, and represses transcription, blocking the male pathway. Influx of Ca, a mediator of STAT3 phosphorylation, is elevated at the female temperature and acts as a temperature-sensitive regulator of STAT3 activation.

View Publication Page
04/15/05 | Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions.
Han Y, Wysocki LM, Thanawala MS, Siegrist T, Aizenberg J
Angewandte Chemie (International ed. in English). 2005 Apr 15;44(16):2386-90. doi: 10.1002/anie.200462296
11/18/22 | TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages.
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, Lindo S, Pujades C, Koyama M, Lee T
Neuron. 2022 Nov 18:. doi: 10.1016/j.neuron.2022.10.035

During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here, we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labeling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation and inactivation of reporters and/or effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.

View Publication Page
02/01/23 | TEMPO enables sequential genetic labeling and manipulation of vertebrate cell lineages.
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Linda Miyares R, Garcia-Marques J, Foster B, Lindo S, Pujades C, Koyama M, Lee T
Neuron. 2023 Feb 01;111(3):345-361.e10. doi: 10.1016/j.neuron.2022.10.035

During development, regulatory factors appear in a precise order to determine cell fates over time. Consequently, to investigate complex tissue development, it is necessary to visualize and manipulate cell lineages with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here, we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labeling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation and inactivation of reporters and/or effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.

View Publication Page
10/28/21 | TEMPO: A system to sequentially label and genetically manipulate vertebrate cell lineages
Espinosa-Medina I, Feliciano D, Belmonte-Mateos C, Garcia-Marques J, Foster B, Miyares RL, Pujades C, Koyama M, Lee T
bioRxiv. 10/2021:. doi: 10.1101/2021.10.27.466134

During development, regulatory factors appear in a precise order to determine cell fates over time. To investigate complex tissue development, one should not just label cell lineages but further visualize and manipulate cells with temporal control. Current strategies for tracing vertebrate cell lineages lack genetic access to sequentially produced cells. Here we present TEMPO (Temporal Encoding and Manipulation in a Predefined Order), an imaging-readable genetic tool allowing differential labelling and manipulation of consecutive cell generations in vertebrates. TEMPO is based on CRISPR and powered by a cascade of gRNAs that drive orderly activation/inactivation of reporters/effectors. Using TEMPO to visualize zebrafish and mouse neurogenesis, we recapitulated birth-order-dependent neuronal fates. Temporally manipulating cell-cycle regulators in mouse cortex progenitors altered the proportion and distribution of neurons and glia, revealing the effects of temporal gene perturbation on serial cell fates. Thus, TEMPO enables sequential manipulation of molecular factors, crucial to study cell-type specification.One-Sentence Summary Gaining sequential genetic access to vertebrate cell lineages.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
Singer Lab
03/01/13 | Temporal and spatial characterization of nonsense-mediated mRNA decay.
Trcek T, Sato H, Singer RH, Maquat LE
Genes & Development. 2013 Mar 1;27(5):541-51. doi: 10.1101/gad.209635.112

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism responsible for "surveying" mRNAs during translation and degrading those that harbor a premature termination codon (PTC). Currently the intracellular spatial location of NMD and the kinetics of its decay step in mammalian cells are under debate. To address these issues, we used single-RNA fluorescent in situ hybridization (FISH) and measured the NMD of PTC-containing β-globin mRNA in intact single cells after the induction of β-globin gene transcription. This approach preserves temporal and spatial information of the NMD process, both of which would be lost in an ensemble study. We determined that decay of the majority of PTC-containing β-globin mRNA occurs soon after its export into the cytoplasm, with a half-life of <1 min; the remainder is degraded with a half-life of >12 h, similar to the half-life of normal PTC-free β-globin mRNA, indicating that it had evaded NMD. Importantly, NMD does not occur within the nucleoplasm, thus countering the long-debated idea of nuclear degradation of PTC-containing transcripts. We provide a spatial and temporal model for the biphasic decay of NMD targets.

View Publication Page
11/27/18 | Temporal control of Drosophila central nervous system development.
Miyares RL, Lee T
Current Opinion in Neurobiology. 2018 Nov 27;56:24-32. doi: 10.1016/j.conb.2018.10.016

A complex nervous system requires precise numbers of various neuronal types produced with exquisite spatiotemporal control. This striking diversity is generated by a limited number of neural stem cells (NSC), where spatial and temporal patterning intersect. Drosophila is a genetically tractable model system that has significant advantages for studying stem cell biology and neuronal fate specification. Here we review the latest findings in the rich literature of temporal patterning of neuronal identity in the Drosophila central nervous system. Rapidly changing consecutive transcription factors expressed in NSCs specify short series of neurons with considerable differences. More slowly progressing changes are orchestrated by NSC intrinsic temporal factor gradients which integrate extrinsic signals to coordinate nervous system and organismal development.

View Publication Page
Pastalkova Lab
04/27/10 | Temporal delays among place cells determine the frequency of population theta oscillations in the hippocampus.
Geisler C, Diba K, Pastalkova E, Mizuseki K, Royer S, Buzsáki G
Proceedings of the National Academy of Sciences of the United States of America. 2010 Apr 27;107(17):7957-62. doi: 10.1523/JNEUROSCI.3773-10.2011

Driven either by external landmarks or by internal dynamics, hippocampal neurons form sequences of cell assemblies. The coordinated firing of these active cells is organized by the prominent "theta" oscillations in the local field potential (LFP): place cells discharge at progressively earlier theta phases as the rat crosses the respective place field ("phase precession"). The faster oscillation frequency of active neurons and the slower theta LFP, underlying phase precession, creates a paradox. How can faster oscillating neurons comprise a slower population oscillation, as reflected by the LFP? We built a mathematical model that allowed us to calculate the population activity analytically from experimentally derived parameters of the single neuron oscillation frequency, firing field size (duration), and the relationship between within-theta delays of place cell pairs and their distance representations ("compression"). The appropriate combination of these parameters generated a constant frequency population rhythm along the septo-temporal axis of the hippocampus, while allowing individual neurons to vary their oscillation frequency and field size. Our results suggest that the faster-than-theta oscillations of pyramidal cells are inherent and that phase precession is a result of the coordinated activity of temporally shifted cell assemblies, relative to the population activity, reflected by the LFP.

View Publication Page
01/11/21 | Temporal evolution of single-cell transcriptomes of olfactory projection neurons.
Xie Q, Brbić M, Horns F, Kolluru SS, Jones RC, Li J, Reddy AR, Xie A, Kohani S, Li Z, McLaughlin CN, Li T, Xu C, Vacek D, Luginbuhl DJ, Leskovec J, Quake SR, Luo L, Li H
Elife. 01/2021;10:. doi: 10.7554/eLife.63450

Neurons undergo substantial morphological and functional changes during development to form precise synaptic connections and acquire specific physiological properties. What are the underlying transcriptomic bases? Here, we obtained the single-cell transcriptomes of olfactory projection neurons (PNs) at four developmental stages. We decoded the identity of 21 transcriptomic clusters corresponding to 20 PN types and developed methods to match transcriptomic clusters representing the same PN type across development. We discovered that PN transcriptomes reflect unique biological processes unfolding at each stage-neurite growth and pruning during metamorphosis at an early pupal stage; peaked transcriptomic diversity during olfactory circuit assembly at mid-pupal stages; and neuronal signaling in adults. At early developmental stages, PN types with adjacent birth order share similar transcriptomes. Together, our work reveals principles of cellular diversity during brain development and provides a resource for future studies of neural development in PNs and other neuronal types.

View Publication Page