Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3681-3690 of 3920 results
03/01/20 | Toward nanoscale localization of memory engrams in Drosophila.
Aso Y, Rubin GM
Journal of Neurogenetics. 2020 Mar 01;34(1):151-55. doi: 10.1080/01677063.2020.1715973

The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.

View Publication Page
07/20/23 | Toward scalable reuse of vEM data: OME-Zarr to the rescue.
Rzepka N, Bogovic JA, Moore JA
Methods in Cell Biology. 2023 Jul 20;177:359-387. doi: 10.1016/bs.mcb.2023.01.016

The growing size of EM volumes is a significant barrier to findable, accessible, interoperable, and reusable (FAIR) sharing. Storage, sharing, visualization and processing are challenging for large datasets. Here we discuss a recent development toward the standardized storage of volume electron microscopy (vEM) data which addresses many of the issues that researchers face. The OME-Zarr format splits data into more manageable, performant chunks enabling streaming-based access, and unifies important metadata such as multiresolution pyramid descriptions. The file format is designed for centralized and remote storage (e.g., cloud storage or file system) and is therefore ideal for sharing large data. By coalescing on a common, community-wide format, these benefits will expand as ever more data is made available to the scientific community.

View Publication Page
07/01/95 | Toward simplifying and accurately formulating fragment assembly.
Myers EW
Journal of Computational Biology: A Journal of Computational Molecular Cell Biology. 1995 Summer;2(2):275-90

The fragment assembly problem is that of reconstructing a DNA sequence from a collection of randomly sampled fragments. Traditionally, the objective of this problem has been to produce the shortest string that contains all the fragments as substrings, but in the case of repetitive target sequences this objective produces answers that are overcompressed. In this paper, the problem is reformulated as one of finding a maximum-likelihood reconstruction with respect to the two-sided Kolmogorov-Smirnov statistic, and it is argued that this is a better formulation of the problem. Next the fragment assembly problem is recast in graph-theoretic terms as one of finding a noncyclic subgraph with certain properties and the objectives of being shortest or maximally likely are also recast in this framework. Finally, a series of graph reduction transformations are given that dramatically reduce the size of the graph to be explored in practical instances of the problem. This reduction is very important as the underlying problems are NP-hard. In practice, the transformed problems are so small that simple branch-and-bound algorithms successfully solve them, thus permitting auxiliary experimental information to be taken into account in the form of overlap, orientation, and distance constraints.

View Publication Page
02/11/16 | Toward the neural implementation of structure learning.
Tervo DG, Tenenbaum JB, Gershman SJ
Current Opinion in Neurobiology. 2016 Feb 11;37:99-105. doi: 10.1016/j.conb.2016.01.014

Despite significant advances in neuroscience, the neural bases of intelligence remain poorly understood. Arguably the most elusive aspect of intelligence is the ability to make robust inferences that go far beyond one's experience. Animals categorize objects, learn to vocalize and may even estimate causal relationships - all in the face of data that is often ambiguous and sparse. Such inductive leaps are thought to result from the brain's ability to infer latent structure that governs the environment. However, we know little about the neural computations that underlie this ability. Recent advances in developing computational frameworks that can support efficient structure learning and inductive inference may provide insight into the underlying component processes and help pave the path for uncovering their neural implementation.

View Publication Page
Looger Lab
11/10/10 | Toward the second generation of optogenetic tools.
Knöpfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2010 Nov 10;30(45):14998-5004. doi: 10.1523/JNEUROSCI.4190-10.2010

This mini-symposium aims to provide an integrated perspective on recent developments in optogenetics. Research in this emerging field combines optical methods with targeted expression of genetically encoded, protein-based probes to achieve experimental manipulation and measurement of neural systems with superior temporal and spatial resolution. The essential components of the optogenetic toolbox consist of two kinds of molecular devices: actuators and reporters, which respectively enable light-mediated control or monitoring of molecular processes. The first generation of genetically encoded calcium reporters, fluorescent proteins, and neural activators has already had a great impact on neuroscience. Now, a second generation of voltage reporters, neural silencers, and functionally extended fluorescent proteins hold great promise for continuing this revolution. In this review, we will evaluate and highlight the limitations of presently available optogenic tools and discuss where these technologies and their applications are headed in the future.

View Publication Page
07/02/24 | Towards a simplified model of primary visual cortex
Du F, Núñez-Ochoa MA, Pachitariu M, Stringer C
bioRxiv. 2024 Jul 02:. doi: 10.1101/2024.06.30.601394

Artificial neural networks (ANNs) have been shown to predict neural responses in primary visual cortex (V1) better than classical models. However, this performance comes at the expense of simplicity because the ANN models typically have many hidden layers with many feature maps in each layer. Here we show that ANN models of V1 can be substantially simplified while retaining high predictive power. To demonstrate this, we first recorded a new dataset of over 29,000 neurons responding to up to 65,000 natural image presentations in mouse V1. We found that ANN models required only two convolutional layers for good performance, with a relatively small first layer. We further found that we could make the second layer small without loss of performance, by fitting a separate "minimodel" to each neuron. Similar simplifications applied for models of monkey V1 neurons. We show that these relatively simple models can nonetheless be useful for tasks such as object and visual texture recognition and we use the models to gain insight into how texture invariance arises in biological neurons.

View Publication Page
07/01/20 | Towards accurate and unbiased imaging-based differentiation of Parkinson's disease, progressive supranuclear palsy and corticobasal syndrome.
Correia MM, Rittman T, Barnes CL, Coyle-Gilchrist IT, Ghosh B, Hughes LE, Rowe JB
Brain Communications. 2020 Jul 1;2(1):fcaa051. doi: 10.1093/braincomms/fcaa051

The early and accurate differential diagnosis of parkinsonian disorders is still a significant challenge for clinicians. In recent years, a number of studies have used magnetic resonance imaging data combined with machine learning and statistical classifiers to successfully differentiate between different forms of Parkinsonism. However, several questions and methodological issues remain, to minimize bias and artefact-driven classification. In this study, we compared different approaches for feature selection, as well as different magnetic resonance imaging modalities, with well-matched patient groups and tightly controlling for data quality issues related to patient motion. Our sample was drawn from a cohort of 69 healthy controls, and patients with idiopathic Parkinson's disease (= 35), progressive supranuclear palsy Richardson's syndrome (= 52) and corticobasal syndrome (= 36). Participants underwent standardized T1-weighted and diffusion-weighted magnetic resonance imaging. Strict data quality control and group matching reduced the control and patient numbers to 43, 32, 33 and 26, respectively. We compared two different methods for feature selection and dimensionality reduction: whole-brain principal components analysis, and an anatomical region-of-interest based approach. In both cases, support vector machines were used to construct a statistical model for pairwise classification of healthy controls and patients. The accuracy of each model was estimated using a leave-two-out cross-validation approach, as well as an independent validation using a different set of subjects. Our cross-validation results suggest that using principal components analysis for feature extraction provides higher classification accuracies when compared to a region-of-interest based approach. However, the differences between the two feature extraction methods were significantly reduced when an independent sample was used for validation, suggesting that the principal components analysis approach may be more vulnerable to overfitting with cross-validation. Both T1-weighted and diffusion magnetic resonance imaging data could be used to successfully differentiate between subject groups, with neither modality outperforming the other across all pairwise comparisons in the cross-validation analysis. However, features obtained from diffusion magnetic resonance imaging data resulted in significantly higher classification accuracies when an independent validation cohort was used. Overall, our results support the use of statistical classification approaches for differential diagnosis of parkinsonian disorders. However, classification accuracy can be affected by group size, age, sex and movement artefacts. With appropriate controls and out-of-sample cross validation, diagnostic biomarker evaluation including magnetic resonance imaging based classifiers may be an important adjunct to clinical evaluation.

View Publication Page
01/01/10 | Towards automated high-throughput screening of C. elegans on agar.
Kabra M, Conery AL, O’Rourke EJ, Xie X, Ljosa. Vebjorn , Jones TR, Ausubel FM, Ruvkun G, Carpenter AE, Freund Y
Arxiv:

High-throughput screening (HTS) using model organisms is a promising method to identify a small number of genes or drugs potentially relevant to human biology or disease. In HTS experiments, robots and computers do a significant portion of the experimental work. However, one remaining major bottleneck is the manual analysis of experimental results, which is commonly in the form of microscopy images. This manual inspection is labor intensive, slow and subjective. Here we report our progress towards applying computer vision and machine learning methods to analyze HTS experiments that use Caenorhabditis elegans (C. elegans) worms grown on agar. Our main contribution is a robust segmentation algorithm for separating the worms from the background using brightfield images. We also show that by combining the output of this segmentation algorithm with an algorithm to detect the fluorescent dye, Nile Red, we can reliably distinguish different fluorescence-based phenotypes even though the visual differences are subtle. The accuracy of our method is similar to that of expert human analysts. This new capability is a significant step towards fully automated HTS experiments using C. elegans.

View Publication Page
04/28/21 | Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model.
Mathias Hammer , Maximiliaan Huisman , Alex Rigano , Ulrike Boehm , James J. Chambers , Nathalie Gaudreault , Alison J. North , Jaime A. Pimentel , Damir Sudar , Peter Bajcsy , Claire M. Brown , Alexander D. Corbett , Orestis Faklaris , Judith Lacoste , Alex Laude , Glyn Nelson , Roland Nitschke , Farzin Farzam , Carlas S. Smith , David Grunwald , Caterina Strambio-De-Castillia
bioRxiv. 2021 Apr 28:. doi: 10.1101/2021.04.25.441198v1

Digital light microscopy provides powerful tools for quantitatively probing the real-time dynamics of subcellular structures. While the power of modern microscopy techniques is undeniable, rigorous record-keeping and quality control are required to ensure that imaging data may be properly interpreted (quality), reproduced (reproducibility), and used to extract reliable information and scientific knowledge which can be shared for further analysis (value). Keeping notes on microscopy experiments and quality control procedures ought to be straightforward, as the microscope is a machine whose components are defined and the performance measurable. Nevertheless, to this date, no universally adopted community-driven specifications exist that delineate the required information about the microscope hardware and acquisition settings (i.e., microscopy “data provenance” metadata) and the minimally accepted calibration metrics (i.e., microscopy quality control metadata) that should be automatically recorded by both commercial microscope manufacturers and customized microscope developers. In the absence of agreed guidelines, it is inherently difficult for scientists to create comprehensive records of imaging experiments and ensure the quality of resulting image data or for manufacturers to incorporate standardized reporting and performance metrics. To add to the confusion, microscopy experiments vary greatly in aim and complexity, ranging from purely descriptive work to complex, quantitative and even sub-resolution studies that require more detailed reporting and quality control measures.

View Publication Page
12/03/21 | Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model.
Hammer M, Huisman M, Rigano A, Boehm U, Chambers JJ, Gaudreault N, North AJ, Pimentel JA, Sudar D, Bajcsy P, Brown CM, Corbett AD, Faklaris O, Lacoste J, Laude A, Nelson G, Nitschke R, Farzam F, Smith CS, Grunwald D, Strambio-De-Castillia C
Nature Methods. 2021 Dec 03;18(12):1427-1440. doi: 10.1038/s41592-021-01327-9