Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4185 Publications

Showing 3801-3810 of 4185 results
01/01/12 | The Pfam protein families database.
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Sean R. Eddy , Bateman A, Finn RD
Nucleic acids research. 2012 Jan;40:D290-301. doi: 10.1093/nar/gkr1065

Pfam is a widely used database of protein families, currently containing more than 13,000 manually curated protein families as of release 26.0. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). Here, we report on changes that have occurred since our 2010 NAR paper (release 24.0). Over the last 2 years, we have generated 1840 new families and increased coverage of the UniProt Knowledgebase (UniProtKB) to nearly 80%. Notably, we have taken the step of opening up the annotation of our families to the Wikipedia community, by linking Pfam families to relevant Wikipedia pages and encouraging the Pfam and Wikipedia communities to improve and expand those pages. We continue to improve the Pfam website and add new visualizations, such as the ’sunburst’ representation of taxonomic distribution of families. In this work we additionally address two topics that will be of particular interest to the Pfam community. First, we explain the definition and use of family-specific, manually curated gathering thresholds. Second, we discuss some of the features of domains of unknown function (also known as DUFs), which constitute a rapidly growing class of families within Pfam.

View Publication Page
Eddy/Rivas Lab
01/01/10 | The Pfam protein families database.
Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A
Nucleic Acids Research. 2010 Jan;38:D211-22. doi: 10.1093/nar/gkp985

Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

View Publication Page
01/01/08 | The Pfam protein families database.
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz H, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A
Nucleic Acids Research. 2008 Jan;36(Database Issue):D281-8. doi: 10.1093/nar/gkm960

Pfam is a comprehensive collection of protein domains and families, represented as multiple sequence alignments and as profile hidden Markov models. The current release of Pfam (22.0) contains 9318 protein families. Pfam is now based not only on the UniProtKB sequence database, but also on NCBI GenPept and on sequences from selected metagenomics projects. Pfam is available on the web from the consortium members using a new, consistent and improved website design in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/), as well as from mirror sites in France (http://pfam.jouy.inra.fr/) and South Korea (http://pfam.ccbb.re.kr/).

View Publication Page
04/15/09 | The phase diagram and the pathway of phase transitions for traffic flow in a circular one-lane roadway.
Wei Z, Hong Y, Wang D
Physica A: Statistical Mechanics and its Applications. 2009 Apr 15;388:1665-72

This paper demonstrates that patient driving habits lead to homogenous congested flow while impatient driving habits lead to wide-moving jam flow in the high density region based on the numerical simulation of the intelligent driver model proposed by M.Treiber [M. Treiber, A.Hennecke, D. Helbing, Phys. Rev. E 62 (2) (2000), 1805–1824]. In a circular one lane traffic system which includes homogeneous drivers, we obtain the stable condition of homogenous flow and the phase diagram of traffic flow based on the linearization analysis. The phase diagram shows three possible pathways of phase transition along with the increase of global density: from the homogenous free flow to the homogenous congested flow directly, from the homogenous free flow to the synchronized flow then to the homogenous congested flow, or from the homogenous free flow to synchronized flow then to the wide-moving jam flow. The paper also analyzes the traffic flow including heterogenous drivers, and the results indicate that homogenous congested flow will lose its stability when the proportion of impatient drivers reaches a critical value and some new kinds of traffic flow emerge: wide-moving jam flow or a mixture of synchronized flow and wide-moving jam flow.

View Publication Page
06/04/24 | The physical and cellular mechanism of structural color change in zebrafish.
Gur D, Moore AS, Deis R, Song P, Wu X, Pinkas I, Deo C, Iyer N, Hess HF, Hammer JA, Lippincott-Schwartz J
Proc Natl Acad Sci U S A. 2024 Jun 04;121(23):e2308531121. doi: 10.1073/pnas.2308531121

Many animals exhibit remarkable colors that are produced by the constructive interference of light reflected from arrays of intracellular guanine crystals. These animals can fine-tune their crystal-based structural colors to communicate with each other, regulate body temperature, and create camouflage. While it is known that these changes in color are caused by changes in the angle of the crystal arrays relative to incident light, the cellular machinery that drives color change is not understood. Here, using a combination of 3D focused ion beam scanning electron microscopy (FIB-SEM), micro-focused X-ray diffraction, superresolution fluorescence light microscopy, and pharmacological perturbations, we characterized the dynamics and 3D cellular reorganization of crystal arrays within zebrafish iridophores during norepinephrine (NE)-induced color change. We found that color change results from a coordinated 20° tilting of the intracellular crystals, which alters both crystal packing and the angle at which impinging light hits the crystals. Importantly, addition of the dynein inhibitor dynapyrazole-a completely blocked this NE-induced red shift by hindering crystal dynamics upon NE addition. FIB-SEM and microtubule organizing center (MTOC) mapping showed that microtubules arise from two MTOCs located near the poles of the iridophore and run parallel to, and in between, individual crystals. This suggests that dynein drives crystal angle change in response to NE by binding to the limiting membrane surrounding individual crystals and walking toward microtubule minus ends. Finally, we found that intracellular cAMP regulates the color change process. Together, our results provide mechanistic insight into the cellular machinery that drives structural color change.

View Publication Page
10/18/21 | The power of peer networking for improving STEM faculty job applications: a successful pilot program
Guardia CM, Kane E, Tebo AG, Sanders AA, Kaya D, Grogan KE
bioRxiv. 10/2021:. doi: 10.1101/2021.10.16.464662

In order to successfully obtain a faculty position, postdoctoral fellows or ‘postdocs’, must submit an application which requires considerable time and effort to produce. These job applications are often reviewed by mentors and colleagues, but rarely are postdocs offered the opportunity to solicit feedback multiple times from reviewers with the same breadth of expertise often found on an academic search committee. To address this gap, this manuscript describes an international peer reviewing program for small groups of postdocs with a broad range of expertise to reciprocally and iteratively provide feedback to each other on their application materials. Over 145 postdocs have participated, often multiple times, over three years. A survey of participants in this program revealed that nearly all participants would recommend participation in such a program to other faculty applicants. Furthermore, this program was more likely to attract participants who struggled to find mentoring and support elsewhere, either because they changed fields or because of their identity as a woman or member of an underrepresented population in STEM. Participation in programs like this one could provide early career academics like postdocs with a diverse and supportive community of peer mentors during the difficult search for a faculty position. Such psychosocial support and encouragement has been shown to prevent attrition of individuals from these populations and programs like this one target the largest ‘leak’ in the pipeline, that of postdoc to faculty. Implementation of similar peer reviewing programs by universities or professional scientific societies could provide a valuable mechanism of support and increased chances of success for early-career academics in their search for independence.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
04/26/23 | The power of peer networking for improving STEM faculty job applications: a successful pilot programme.
Guardia CM, Kane E, Tebo AG, Sanders AA, Kaya D, Grogan KE
Proceedings. Biological Sciences. 2023 Apr 26;290(1997):20230124. doi: 10.1098/rspb.2023.0124

To attain a faculty position, postdoctoral fellows submit job applications that require considerable time and effort to produce. Although mentors and colleagues review these applications, postdocs rarely receive iterative feedback from reviewers with the breadth of expertise typically found on an academic search committee. To address this gap, we describe an international peer-reviewing programme for postdocs across disciplines to receive reciprocal, iterative feedback on faculty applications. A participant survey revealed that nearly all participants would recommend the programme to others. Furthermore, our programme was more likely to attract postdocs who struggled to find mentoring, possibly because of their identity as a woman or member of an underrepresented population in STEM or because they changed fields. Between 2018 and 2021, our programme provided nearly 150 early career academics with a diverse and supportive community of peer mentors during the difficult search for a faculty position and continues to do so today. As the transition from postdoc to faculty represents the largest 'leak' in the academic pipeline, implementation of similar programmes by universities or professional societies would provide psycho-social support necessary to prevent attrition of individuals from underrepresented populations as well as increase the chances of success for early career academics in their search for independence.

View Publication Page
Ji Lab
09/17/14 | The practical and fundamental limits of optical imaging in mammalian brains.
Ji N
Neuron. 2014 Sep 17;83(6):1242-1245. doi: 10.1016/j.neuron.2014.08.009

Advances in chemistry and physics have profound effects on neuroimaging. Current and future progress in these disciplines will continue to aid in efforts to visualize neural circuitry, particularly in deeper layers of the brain.

View Publication Page
Gonen Lab
02/26/10 | The prototypical H+/galactose symporter GalP assembles into functional trimers.
Zheng H, Taraska J, Merz AJ, Gonen T
Journal of Molecular Biology. 2010 Feb 26;396(3):593-601. doi: 10.1016/j.jmb.2009.12.010

Glucose is a primary source of energy for human cells. Glucose transporters form specialized membrane channels for the transport of sugars into and out of cells. Galactose permease (GalP) is the closest bacterial homolog of human facilitated glucose transporters. Here, we report the functional reconstitution and 2D crystallization of GalP. Single particle electron microscopy analysis of purified GalP shows that the protein assembles as an oligomer with three distinct densities. Reconstitution assays yield 2D GalP crystals that exhibit a hexagonal array having p3 symmetry. The projection structure of GalP at 18 A resolution shows that the protein is trimeric. Each monomer in the trimer forms its own channel, but an additional cavity (10 approximately 15 A in diameter) is apparent at the 3-fold axis of the oligomer. We show that the crystalline GalP is able to selectively bind substrate, suggesting that the trimeric form is biologically active.

View Publication Page