Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3920 Publications

Showing 3911-3920 of 3920 results
06/16/95 | Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway.
Rebay I, Rubin GM
Cell. 1995 Jun 16;81(6):857-66. doi: 10.1186/gb-2007-8-7-r145

Drosophila yan has been postulated to act as an antagonist of the proneural signal mediated by the sevenless/Ras1/MAPK pathway. We have mutagenized the eight MAPK phosphorylation consensus sites of yan and examined the effects of overexpressing the mutant protein in transgenic flies and transfected S2 cultured cells. Our results suggest that phosphorylation by MAPK affects the stability and subcellular localization of yan, resulting in rapid down-regulation of yan activity. Furthermore, MAPK-mediated down-regulation of yan function appears to be critical for the proper differentiation of both neuronal and nonneuronal tissues throughout development, suggesting that yan is an essential component of a general timing mechanism controlling the competence of a cell to respond to inductive signals.

View Publication Page
05/07/24 | YAP condensates are highly organized hubs
Siyuan Hao , Ye Jin Lee , Nadav Benhamou Goldfajn , Eduardo Flores , Jindayi Liang , Hannah Fuehrer , Justin Demmerle , Jennifer Lippincott-Schwartz , Zhe Liu , Shahar Sukenik , Danfeng Cai
iScience. 2024 May 07:109927. doi: https://doi.org/10.1016/j.isci.2024.109927

YAP/TEAD signaling is essential for organismal development, cell proliferation, and cancer progression. As a transcriptional coactivator, how YAP activates its downstream target genes is incompletely understood. YAP forms biomolecular condensates in response to hyperosmotic stress, concentrating transcription-related factors to activate downstream target genes. However, whether YAP forms condensates under other signals, how YAP condensates organize and function, and how YAP condensates activate transcription in general are unknown. Here, we report that endogenous YAP forms sub-micron scale condensates in response to Hippo pathway regulation and actin cytoskeletal tension. YAP condensates are stabilized by the transcription factor TEAD1, and recruit BRD4, a coactivator that is enriched at active enhancers. Using single-particle tracking, we found that YAP condensates slowed YAP diffusion within condensate boundaries, a possible mechanism for promoting YAP target search. These results reveal that YAP condensate formation is a highly regulated process that is critical for YAP/TEAD target gene expression.

View Publication Page
07/23/21 | YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion.
Feliciano D, Ott CM, Isabel Espinosa Medina , Weigel AV, Benedetti L, Milano KM, Tang Z, Lee T, Kliman HJ, Guller SM, Lippincott-Schwartz J
Nature Communications. 2021 Jul 23;12(1):4502. doi: 10.1038/s41467-021-24708-2

Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.

View Publication Page
10/09/87 | Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7.
Masters BS, Stohl LL, Clayton DA
Cell. 1987 Oct 9;51(1):89-99. doi: 10.1101/gad.1352105

Analysis of the nucleotide sequence of the genetic locus for yeast mitochondrial RNA polymerase (RPO41) reveals a continuous open reading frame with the coding potential for a polypeptide of 1351 amino acids, a size consistent with the electrophoretic mobility of this enzymatic activity. The transcription product from this gene spans the singular reading frame. In vivo transcript abundance reflects codon usage and growth under stringent conditions for mitochondrial biogenesis and function results in a several fold higher level of gene expression than growth under glucose repression. A comparison of the yeast mitochondrial RNA polymerase amino acid sequence to those of E. coli RNA polymerase subunits failed to demonstrate any regions of homology. Interestingly, the mitochondrial enzyme is highly homologous to the DNA-directed RNA polymerases of bacteriophages T3 and T7, especially in regions most highly conserved between the T3 and T7 enzymes themselves.

View Publication Page
02/06/21 | ZCCHC8 is required for the degradation of pervasive transcripts originating from multiple genomic regulatory features
Joshua W. Collins , Daniel Martin , Genomics , Computational Biology Core , Shaohe Wang , Kenneth M. Yamada
bioRxiv. 02/2021:. doi: 10.1101/2021.01.29.428898

The vast majority of mammalian genomes are transcribed as non-coding RNA in what is referred to as “pervasive transcription.” Recent studies have uncovered various families of non-coding RNA transcribed upstream of transcription start sites. In particular, highly unstable promoter upstream transcripts known as PROMPTs have been shown to be targeted for exosomal degradation by the nuclear exosome targeting complex (NEXT) consisting of the RNA helicase MTR4, the zinc-knuckle scaffold ZCCHC8, and the RNA binding protein RBM7. Here, we report that in addition to its known RNA substrates, ZCCHC8 is required for the targeted degradation of pervasive transcripts produced at CTCF binding sites, open chromatin regions, promoters, promoter flanking regions, and transcription factor binding sites. Additionally, we report that a significant number of RIKEN cDNAs and predicted genes display the hallmarks of PROMPTs and are also substrates for ZCCHC8 and/or NEXT complex regulation suggesting these are unlikely to be functional genes. Our results suggest that ZCCHC8 and/or the NEXT complex may play a larger role in the global regulation of pervasive transcription than previously reported.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
11/04/19 | Zebrafish neuroscience: Using artificial neural networks to help understand brains.
Ahrens MB
Current Biology. 2019 Nov 04;29(21):R1138-R1140. doi: 10.1016/j.cub.2019.09.039

Brains are notoriously hard to understand, and neuroscientists need all the tools they can get their hands on to have a realistic shot at it. Advances in machine learning are proving instrumental, illustrated by their recent use to shed light on navigational strategies implemented by zebrafish brains.

View Publication Page
03/03/17 | Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules.
Han X, Li P, Yang Z, Huang X, Wei G, Sun Y, Kang X, Hu X, Deng Q, Chen L, He A, Huo Y, Li D, Betzig E, Luo J
Nature Communications. 2017 Mar 03;8:14639. doi: 10.1038/ncomms14639

Endothelial exocytosis of Weibel-Palade body (WPB) is one of the first lines of defence against vascular injury. However, the mechanisms that control WPB exocytosis in the final stages (including the docking, priming and fusion of granules) are poorly understood. Here we show that the focal adhesion protein zyxin is crucial in this process. Zyxin downregulation inhibits the secretion of von Willebrand factor (VWF), the most abundant cargo in WPBs, from human primary endothelial cells (ECs) induced by cAMP agonists. Zyxin-deficient mice exhibit impaired epinephrine-stimulated VWF release, prolonged bleeding time and thrombosis, largely due to defective endothelial secretion of VWF. Using live-cell super-resolution microscopy, we visualize previously unappreciated reorganization of pre-existing actin filaments around WPBs before fusion, dependent on zyxin and an interaction with the actin crosslinker α-actinin. Our findings identify zyxin as a physiological regulator of endothelial exocytosis through reorganizing local actin network in the final stage of exocytosis.

View Publication Page
Looger Lab
03/28/13 | ß-synuclein aggregates and induces neurodegeneration in dopaminergic neurons.
Taschenberger G, Toloe J, Tereshchenko J, Akerboom J, Wales P, Benz R, Becker S, Outeiro T, Looger L, Bähr M, Zweckstetter M, Kügler S
Annals of Neurology. 2013 Mar 28;74(1):109-18. doi: 10.1002/ana.23905

Objective: While the contribution of α-Synuclein to neurodegeneration in Parkinson’s disease is well accepted, the putative impact of its close homologue, β-Synuclein, is enigmatic. β-Synuclein is widely expressed throughout the central nervous system as is α-Synuclein, but the physiological functions of both proteins remain unknown. Recent findings supported the view that β-Synuclein can act as an ameliorating regulator of α-Synuclein-induced neurotoxicity, having neuroprotective rather than neurodegenerative capabilities, and being non-aggregating due to absence of most part of the aggregation-promoting NAC domain. However, a mutation of β-Synuclein linked to dementia with Lewy bodies rendered the protein neurotoxic in transgenic mice and fibrillation of β-Synuclein has been demonstrated in vitro. Methods / Results: Supporting the hypothesis that β-Synuclein can act as a neurodegeneration-inducing factor we now demonstrate that wild-type β-Synuclein is neurotoxic for cultured primary neurons. Furthermore, β-Synuclein formed proteinase K resistant aggregates in dopaminergic neurons in vivo, leading to pronounced and progressive neurodegeneration in rats. Expression of β-Synuclein caused mitochondrial fragmentation, but this fragmentation did not render mitochondria non-functional in terms of ion handling and respiration even in late stages of neurodegeneration. A comparison of the neurodegenerative effects induced by α-, β-, and γ-Synuclein revealed that β-Synuclein was eventually as neurotoxic as α-Synuclein for nigral dopaminergic neurons, while γ-Synuclein proved to be non-toxic and had very low aggregation propensity. Interpretation: Our results suggest that the role of β-Synuclein as a putative modulator of neuropathology in aggregopathies like Parkinson’s disease and dementia with Lewy bodies needs to be revisited. ANN NEUROL 2013. © 2013 American Neurological Association.

View Publication Page
Singer Lab
09/01/12 | β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration.
Katz ZB, Wells AL, Park HY, Wu B, Shenoy SM, Singer RH
Genes & Development. 2012 Sep 1;26(17):1885-90. doi: 10.1101/gad.190413.112

Directed cell motility is at the basis of biological phenomena such as development, wound healing, and metastasis. It has been shown that substrate attachments mediate motility by coupling the cell's cytoskeleton with force generation. However, it has been unclear how the persistence of cell directionality is facilitated. We show that mRNA localization plays an important role in this process, but the mechanism of action is still unknown. In this study, we show that the zipcode-binding protein 1 transports β-actin mRNA to the focal adhesion compartment, where it dwells for minutes, suggesting a means for associating its localization with motility through the formation of stable connections between adhesions and newly synthesized actin filaments. In order to demonstrate this, we developed an approach for assessing the functional consequences of β-actin mRNA and protein localization by tethering the mRNA to a specific location-in this case, the focal adhesion complex. This approach will have a significant impact on cell biology because it is now possible to forcibly direct any mRNA and its cognate protein to specific locations in the cell. This will reveal the importance of localized protein translation on various cellular processes.

View Publication Page
11/14/12 | β-secretase cleavage of the fly amyloid precursor protein is required for glial survival.
Bolkan BJ, Triphan T, Kretzschmar D
Journal of Neuroscience. 2012 Nov 14;32(46):16181-92. doi: 10.1523/JNEUROSCI.0228-12.2012

β-secretase (or BACE1) is the key enzyme in the production of β-amyloid (Aβ), which accumulates in the senile plaques characteristic for Alzheimer's disease. Consequently, the lack of BACE1 prevents β-processing of the amyloid precursor protein and Aβ production, which made it a promising target for drug development. However, the loss of BACE1 is also detrimental, leading to myelination defects and altered neuronal activity, functions that have been associated with the cleavage of Neuregulin and a voltage-gated sodium channel subunit. Here we show that the Drosophila ortholog of BACE, dBACE, is required for glial survival. Cell-specific knockdown experiments reveal that this is a non-cell autonomous function, as a knockdown of dBACE in photoreceptor neurons leads to progressive degeneration of glia in their target zone, the lamina. Interestingly, this phenotype is suppressed by the loss of the fly amyloid precursor protein (APPL), whereas a secretion-deficient form of APPL enhances the degeneration. This shows that full-length APPL in neurons promotes the death of neighboring glial cells and that β-processing of APPL is needed to prevent glial death. These results therefore not only demonstrate a novel function for an APP protein in glia, but they also show this function specifically requires regulation by β-cleavage.

View Publication Page