Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4190 Publications

Showing 1181-1190 of 4190 results
04/19/12 | Differential uptake of MRI contrast agents indicates charge-selective blood-brain interface in the crayfish
Otopalik AG, Shin J, Beltz BS, Sandeman DC, Kolodny NH
Cell and Tissue Research. 2012 Apr 19;349(2):493 - 503. doi: 10.1007/s00441-012-1413-9

This study provides a new perspective on the long-standing problem of the nature of the decapod crustacean blood-brain interface. Previous studies of crustacean blood-brain interface permeability have relied on invasive histological, immunohistochemical and electrophysiological techniques, indicating a leaky non-selective blood-brain barrier. The present investigation involves the use of magnetic resonance imaging (MRI), a method for non-invasive longitudinal tracking of tracers in real-time. Differential uptake rates of two molecularly distinct MRI contrast agents, namely manganese (Mn(II)) and Magnevist® (Gd-DTPA), were observed and quantified in the crayfish, Cherax destructor. Contrast agents were injected into the pericardium and uptake was observed with longitudinal MRI for approximately 14.5 h. Mn(II) was taken up quickly into neural tissue (within 6.5 min), whereas Gd-DTPA was not taken up into neural tissue and was instead restricted to the intracerebral vasculature or excreted into nearby sinuses. Our results provide evidence for a charge-selective intracerebral blood-brain interface in the crustacean nervous system, a structural characteristic once considered too complex for a lower-order arthropod.

View Publication Page
10/01/11 | Digital scanned laser light sheet fluorescence microscopy.
Keller PJ, Stelzer EH
Cold Spring Harbor Protocols. 2011 Oct;2010(10):pdb.top78. doi: 10.1101/pdb.top78

Modern applications in the life sciences are frequently based on in vivo imaging of biological specimens, a domain for which light microscopy approaches are typically best suited. Often, quantitative information must be obtained from large multicellular organisms at the cellular or even subcellular level and with a good temporal resolution. However, this usually requires a combination of conflicting features: high imaging speed, low photobleaching and low phototoxicity in the specimen, good three-dimensional (3D) resolution, an excellent signal-to-noise ratio, and multiple-view imaging capability. The latter feature refers to the capability of recording a specimen along multiple directions, which is crucial for the imaging of large specimens with strong light-scattering or light-absorbing tissue properties. An imaging technique that fulfills these requirements is essential for many key applications: For example, studying fast cellular processes over long periods of time, imaging entire embryos throughout development, or reconstructing the formation of morphological defects in mutants. Here, we discuss digital scanned laser light sheet fluorescence microscopy (DSLM) as a novel tool for quantitative in vivo imaging in the post-genomic era and show how this emerging technique relates to the currently most widely applied 3D microscopy techniques in biology: confocal fluorescence microscopy and two-photon microscopy.

View Publication Page
10/01/11 | Digital scanned laser light-sheet fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development.
Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH
Cold Spring Harbor Protocols. 2011 Oct;2011(10):1235-43. doi: 10.1101/pdb.prot065839

Embryonic development is one of the most complex processes encountered in biology. In vertebrates and higher invertebrates, a single cell transforms into a fully functional organism comprising several tens of thousands of cells, arranged in tissues and organs that perform impressive tasks. In vivo observation of this biological process at high spatiotemporal resolution and over long periods of time is crucial for quantitative developmental biology. Importantly, such recordings must be realized without compromising the physiological development of the specimen. In digital scanned laser light-sheet fluorescence microscopy (DSLM), a specimen is rapidly scanned with a thin sheet of light while fluorescence is recorded perpendicular to the axis of illumination with a camera. Combining light-sheet technology and fast laser scanning, DSLM delivers quantitative data for entire embryos at high spatiotemporal resolution. Compared with confocal and two-photon fluorescence microscopy, DSLM exposes the embryo to at least three orders of magnitude less light energy, but still provides up to 50 times faster imaging speeds and a 10–100-fold higher signal-to-noise ratio. By using automated image processing algorithms, DSLM images of embryogenesis can be converted into a digital representation. These digital embryos permit following cells as a function of time, revealing cell fate as well as cell origin. By means of such analyses, developmental building plans of tissues and organs can be determined in a whole-embryo context. This article presents a sample preparation and imaging protocol for studying the development of whole zebrafish and Drosophila embryos using DSLM.

View Publication Page
01/01/23 | Dimensionality reduction of calcium-imaged neuronal population activity
Tze Hui Koh , William E. Bishop , Takashi Kawashima , Brian B. Jeon , Ranjani Srinivasan , Sandra J. Kuhlman , Misha B. Ahrens , Steven M. Chase , Byron M. Yu
Nature Computational Science. 2023 Jan 01:. doi: 10.1038/s43588-022-00390-2

Calcium imaging has been widely adopted for its ability to record from large neuronal populations. To summarize the time course of neural activity, dimensionality reduction methods, which have been applied extensively to population spiking activity, may be particularly useful. However, it is unclear if the dimensionality reduction methods applied to spiking activity are appropriate for calcium imaging. We thus carried out a systematic study of design choices based on standard dimensionality reduction methods. We also developed a novel method to perform deconvolution and dimensionality reduction simultaneously (termed CILDS). CILDS most accurately recovered the single-trial, low-dimensional time courses from calcium imaging that would have been recovered from spiking activity. CILDS also outperformed the other methods on calcium imaging recordings from larval zebrafish and mice. More broadly, this study represents a foundation for summarizing calcium imaging recordings of large neuronal populations using dimensionality reduction in diverse experimental settings.

View Publication Page
04/18/94 | Dimensions of luminescent oxidized and porous silicon structures.
Schuppler S, Friedman S, Marcus M, Adler D, Xie Y, Ross F, Harris TD, Brown W, Chabal Y, Brus L, Citrin P
Physical Review Letters. 1994 Apr 18;72(16):2648-51

X-ray absorption measurements from H-passivated porous Si and from oxidized Si nanocrystals, combined with electron microscopy, ir absorption, α recoil, and luminescence emission data, provide a consistent structural picture of the species responsible for the visible luminescence observed in these samples. The mass-weighted average structures in por-Si are particles, not wires, with dimensions significantly smaller than previously reported or proposed.

View Publication Page
01/01/10 | Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.
Huang G, Gao L, Duncan J, Harper JD, Sanders NL, Ouyang Z, Cooks RG
Journal of the American Society for Mass Spectrometry. 2010 Jan;21(1):132-5. doi: 10.1364/AO.50.001792

The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds’ permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics.

View Publication Page
09/01/21 | Direct detection of SARS-CoV-2 RNA using high-contrast pH-sensitive dyes.
Timothy A. Brown , Katherine S. Schaefer , Arthur Tsang , Hyun Ah Yi , Jonathan B. Grimm , Andrew L. Lemire , Fadi M. Jradi , Charles Kim , Kevin McGowan , Kimberly Ritola , Derek T. Armstrong , Heba H. Mostafa , Wyatt Korff , Ronald D. Vale , Luke D. Lavis
Journal of Biomolecular Techniques. 2021 Sep 01;32(3):121-133. doi: https://doi.org/10.1101/2020.12.26.20248878

The worldwide COVID-19 pandemic has had devastating effects on health, healthcare infrastructure, social structure, and economics. One of the limiting factors in containing the spread of this virus has been the lack of widespread availability of fast, inexpensive, and reliable methods for testing of individuals. Frequent screening for infected and often asymptomatic people is a cornerstone of pandemic management plans. Here, we introduce two pH sensitive ‘LAMPshade’ dyes as novel readouts in an isothermal RT- LAMP amplification assay for SARS-CoV-2 RNA. The resulting JaneliaLAMP (jLAMP) assay is robust, simple, inexpensive, has low technical requirements and we describe its use and performance in direct testing of contrived and clinical samples without RNA extraction.

View Publication Page
Grigorieff Lab
02/19/13 | Direct detection pays off for electron cryo-microscopy.
Grigorieff N
eLife. 2013 Feb 19;2:e00573. doi: 10.7554/eLife.00573

Improved electron detectors and image-processing techniques will allow the structures of macromolecules to be determined from tens of thousands of single-particle cryo-EM images, rather than the hundreds of thousands needed previously.

View Publication Page
Looger LabKeller Lab
12/15/15 | Direct in vivo manipulation and imaging of calcium transients in neutrophils identify a critical role for leading-edge calcium flux.
Beerman RW, Matty MA, Au GG, Looger LL, Choudhury KR, Keller PJ, Tobin DM
Cell Reports. 2015 Dec 15;13(10):2107-17. doi: 10.1016/j.celrep.2015.11.010

Calcium signaling has long been associated with key events of immunity, including chemotaxis, phagocytosis, and activation. However, imaging and manipulation of calcium flux in motile immune cells in live animals remain challenging. Using light-sheet microscopy for in vivo calcium imaging in zebrafish, we observe characteristic patterns of calcium flux triggered by distinct events, including phagocytosis of pathogenic bacteria and migration of neutrophils toward inflammatory stimuli. In contrast to findings from ex vivo studies, we observe enriched calcium influx at the leading edge of migrating neutrophils. To directly manipulate calcium dynamics in vivo, we have developed transgenic lines with cell-specific expression of the mammalian TRPV1 channel, enabling ligand-gated, reversible, and spatiotemporal control of calcium influx. We find that controlled calcium influx can function to help define the neutrophil's leading edge. Cell-specific TRPV1 expression may have broad utility for precise control of calcium dynamics in other immune cell types and organisms.

View Publication Page
01/09/24 | Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model
Trung V. Phan , Henry H. Mattingly , Lam Vo , Jonathan S. Marvin , Loren L. Looger , Thierry Emonet
Proceedings of the National Academy of Sciences. 2024 Jan 09:. doi: 10.1073/pnas.230925112

Chemotactic bacteria not only navigate chemical gradients, but also shape their environments by consuming and secreting attractants. Investigating how these processes influence the dynamics of bacterial populations has been challenging because of a lack of experimental methods for measuring spatial profiles of chemoattractants in real time. Here, we use a fluorescent sensor for aspartate to directly measure bacterially generated chemoattractant gradients during collective migration. Our measurements show that the standard Patlak-Keller-Segel model for collective chemotactic bacterial migration breaks down at high cell densities. To address this, we propose modifications to the model that consider the impact of cell density on bacterial chemotaxis and attractant consumption. With these changes, the model explains our experimental data across all cell densities, offering new insight into chemotactic dynamics. Our findings highlight the significance of considering cell density effects on bacterial behavior, and the potential for fluorescent metabolite sensors to shed light on the complex emergent dynamics of bacterial communities.

View Publication Page